Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Zool Res ; 45(1): 125-135, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38114438

ABSTRACT

Geographical background and dispersal ability may strongly influence assemblage dissimilarity; however, these aspects have generally been overlooked in previous large-scale beta diversity studies. Here, we examined whether the patterns and drivers of taxonomic beta diversity (TBD) and phylogenetic beta diversity (PBD) of breeding birds in China vary across (1) regions on both sides of the Hu Line, which demarcates China's topographical, climatic, economic, and social patterns, and (2) species with different dispersal ability. TBD and PBD were calculated and partitioned into turnover and nestedness components using a moving window approach. Variables representing climate, habitat heterogeneity, and habitat quality were employed to evaluate the effects of environmental filtering. Spatial distance was considered to assess the impact of dispersal limitation. Variance partitioning analysis was applied to assess the relative roles of these variables. In general, the values of TBD and PBD were high in mountainous areas and were largely determined by environmental filtering. However, different dominant environmental filters on either side of the Hu Line led to divergent beta diversity patterns. Specifically, climate-driven species turnover and habitat heterogeneity-related species nestedness dominated the regions east and west of the line, respectively. Additionally, bird species with stronger dispersal ability were more susceptible to environmental filtering, resulting in more homogeneous assemblages. Our results indicated that regions with distinctive geographical backgrounds may present different ecological factors that lead to divergent assemblage dissimilarity patterns, and dispersal ability determines the response of assemblages to these ecological factors. Identifying a single universal explanation for the observed pattern without considering these aspects may lead to simplistic or incomplete conclusions. Consequently, a comprehensive understanding of large-scale beta diversity patterns and effective planning of conservation strategies necessitate the consideration of both geographical background and species dispersal ability.


Subject(s)
Biodiversity , Ecosystem , Animals , Phylogeny , China , Birds/genetics
2.
Bull Environ Contam Toxicol ; 104(5): 682-688, 2020 May.
Article in English | MEDLINE | ID: mdl-32239255

ABSTRACT

The increasing concentration of surface ozone (O3) was observed during recent decades in the world, which affects tree roots and forest soils. Meanwhile, the impact of ozone on tree roots is greatly affected by soil condition. However, there is a lack of knowledge about the possible effects of ozone on tree roots and soil processes. In this study, The influences of surface ozone (O3) stress on the root biomass, morphology, nutrients, soil properties, and soil enzyme activity of Elaeocarpus sylvestris and Michelia chapensis seedlings were examined at four O3 concentrations (charcoal-filtered air, 1 × O3 air, 2 × O3 air, and 4 × O3 air). Elevated O3 concentrations were found to significantly increase the root C content, N content, C/P ratio, and N/P ratio, and significantly decrease the root biomass, number of root tips, and root C/N ratio of both species. The soil organic matter content, pH, total N content, and urease and catalase activities of both species tended to increase. The limitation in root growth and responses in the root structure of E. sylvestris induced by elevated O3 concentrations led to increased bulk density and decreased soil porosity and void ratio. These profound effects of O3 concentrations on the roots and soil characteristics of these two species underscore the importance of research in O3 science.


Subject(s)
Air Pollutants/toxicity , Elaeocarpaceae/drug effects , Magnoliaceae/drug effects , Ozone/toxicity , Plant Roots/drug effects , Soil/chemistry , Air Pollutants/analysis , Biomass , China , Elaeocarpaceae/growth & development , Forests , Magnoliaceae/growth & development , Ozone/analysis , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Roots/growth & development , Seedlings/drug effects , Seedlings/growth & development
3.
Environ Sci Pollut Res Int ; 26(30): 30684-30692, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31049865

ABSTRACT

High O3 exposure affects the forest growth and soil characteristics. Although there is substantial evidence that O3 does impose a stress on forest trees, the effects of O3 on roots and soil of evergreen broad-leaved tree species in South China remain unknown. The effects of ozone (O3) fumigation on the root biomass, root morphology, root nutrient, soil physical, and chemical properties were examined in Cinnamomum camphora seedlings grown under four O3 treatments (charcoal-filtered air (CF) or O3 at 1×, 2× and 4× ambient concentration). O3 significantly decreased root biomass and root carbon (C). Regardless of O3 level, elevated O3 significantly resulted in reduced root surface area, volume, number of forks, and specific root length (SRL). The percentages of fine to total root in terms of root surface area and root volume of seedlings under the CF and 1 × O3 treatments were significantly higher than those of seedlings under the 4 × O3 treatment, indicating that high O3 level impaired the growth performance of fine roots. O3 affected root growth and structures, which increased soil bulk density and reduced soil total porosity and void ratio. The soil pH under all O3 fumigation treatments significantly increased compared with CF treatment, whereas the organic matter significantly decreased. In conclusion, although the increased O3 level enhanced root N and P under 2 and 4 × O3 treatments compared with 1 × O3 treatment as compensation mechanisms to prevent O3-induced decrease in root C gain and root functions, O3 still decreased the root biomass and root tips, and changed the soil physical and chemical properties.


Subject(s)
Cinnamomum camphora/drug effects , Cinnamomum camphora/physiology , Ozone/pharmacology , Plant Roots/drug effects , Plant Roots/physiology , Soil/chemistry , Biomass , Carbon/metabolism , China , Forests , Fumigation , Seedlings/drug effects , Seedlings/physiology , Stress, Physiological , Trees/drug effects , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...