Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol Pract ; 9: 168-175, 2024.
Article in English | MEDLINE | ID: mdl-38707483

ABSTRACT

Objective: Nerve conduction studies (NCS) require valid reference limits for meaningful interpretation. We aimed to further develop the extrapolated norms (e-norms) method for obtaining NCS reference limits from historical laboratory datasets for children and adults, and to validate it against traditionally derived reference limits. Methods: We compared reference limits obtained by applying a further developed e-norms with reference limits from healthy controls for the age strata's 9-18, 20-44 and 45-60 years old. The control data consisted of 65 healthy children and 578 healthy adults, matched with 1294 and 5628 patients respectively. Five commonly investigated nerves were chosen: The tibial and peroneal motor nerves (amplitudes, conduction velocities, F-waves), and the sural, superficial peroneal and medial plantar sensory nerves (amplitudes, conduction velocities). The datasets were matched by hospital to ensure identical equipment and protocols. The e-norms method was adapted, and reference limit calculation using both ±2 SD (original method) and ±2.5 SD (to compensate for predicted underestimation of population SD by the e-norms method) was compared to control data using ±2 SD. Percentage agreement between e-norms and the traditional method was calculated. Results: On average, the e-norms method (mean ±2 SD) produced slightly stricter reference limits compared to the traditional method. Increasing the e-norms range to mean ±2.5 SD improved the results in children while slightly overcorrecting in the adult group. The average agreement between the two methods was 95 % (±2 SD) and 96 % (±2.5 SD). Conclusions: The e-norms method yielded slightly stricter reference limits overall than ones obtained through traditional methods; However, much of the difference can be attributed to a few outlying plots where the raters found it difficult to apply e-norms correctly. The two methods disagreed on classification of 4-5% of cases. Our e-norms software is suited to analyze large amounts of raw NCS data; it should further reduce bias and facilitate more accurate ratings. Significance: With small adaptations, the e-norms method adequately replicates traditionally derived reference limits, and is a viable method to produce reference limits from historical datasets.

2.
Clin Neurophysiol Pract ; 6: 63-71, 2021.
Article in English | MEDLINE | ID: mdl-33665518

ABSTRACT

OBJECTIVE: Quantitative thermal testing (QTT) is a psychophysical assessment method of small nerve fibers that relies on reference material to assess function. Normal limits for within-subject comparisons of thermal thresholds are scarce, and their association with age, height and sex is not fully elucidated. The aim of this study was to investigate the normal limits for distal-proximal- and contralateral homologous comparisons of thermal thresholds with QTT, and their association with age, sex or height. METHODS: Fifty healthy volunteers ages 20-79 participated in the experiment. Cold detection thresholds (CDT), warm detection thresholds (WDT), heat pain thresholds (HPT), and cold pain thresholds (CPT) were measured bilaterally at the thenar eminence, anterior thigh, distal medial leg and foot dorsum. Sample normal limits were calculated as (mean) ±â€¯2 SD. RESULTS: Forty-eight subjects were included in the analysis. CPT was excluded from all analyses due to a large floor-effect. Sample normal limits for side-differences ranged from 1.8 to 7.2 °C for CDT, 2.4-6.8 °C for WDT and 3.2-4.0 °C for HPT, depending on anatomical site. For distal-proximal comparisons, sample normal limits ranged from 4.0 to 8.7 °C for CDT, 6.0-14.0 °C for WDT and 4.2-9.0 °C for HPT, depending on the pairs compared. Age was associated with side-differences for CDT in the thenar eminences (p < 0.001) and distal medial legs (p < 0.002), and with 11 of 18 distal-proximal comparisons (p < 0.01). CONCLUSIONS: The normal limits for distal-proximal- and contralateral homologous thermal thresholds were wide, and thus of limited use in a clinical setting, although the reported values may be somewhat inflated by low sample-size and consequent age-pooling. Age, but not sex or height, was associated with contralateral differences in CDT in the thenar eminences and distal medial legs, and with most distal-proximal differences. SIGNIFICANCE: Due to wide normal limits, we advise caution when utilizing relative comparisons of thermal thresholds for diagnostic purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...