Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 154(2): 024501, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33445919

ABSTRACT

Experimental studies of the glassy slowdown in molecular liquids indicate that the high-temperature activation energy E∞ of glass-forming liquids is directly related to their glass transition temperature Tg. To further investigate such a possible relation between high- and low-temperature dynamics in glass-forming liquids, we analyze the glassy dynamics of binary mixtures using molecular dynamics simulations. We consider a binary mixture of charged Lennard-Jones particles and vary the partial charges of the particles and, thus, the high-temperature activation energy and the glass transition temperature of the system. Based on previous results, we introduce a phenomenological model describing relaxation times over the whole temperature regime from high temperatures to temperatures well inside the supercooled regime. By investigating the dynamics of both particle species on molecular and diffusive length scales along isochoric and isobaric pathways, we find a quadratic charge dependence of both E∞ and Tg, resulting in an approximately constant ratio of both quantities independent of the underlying observable, the thermodynamic ensemble, and the particle species, and this result is robust against the actual definition of Tg. This generic relation between the activation energy and the glass transition temperature indicates that high-temperature dynamics and the glassy slowdown are related phenomena, and the knowledge of E∞ may allow us to approximately predict Tg.

2.
Phys Rev Lett ; 123(3): 038004, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31386471

ABSTRACT

Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.

3.
Phys Rev Lett ; 117(23): 238002, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27982656

ABSTRACT

We propose a model solely based on actin treadmilling and polymerization which describes many characteristic states of actin-wave formation: spots, spirals, and traveling waves. In our model, as in experiments on cells recovering motility following actin depolymerization, we choose an isotropic low-density initial condition; polymerization of actin filaments then raises the density towards the Onsager threshold where they align. We show that this alignment, in turn, destabilizes the isotropic phase and generically induces transient actin spots or spirals as part of the dynamical pathway towards a polarized phase which can either be uniform or consist of a series of actin-wave trains (flocks). Our results uncover a universal route to actin-wave formation in the absence of any system-specific nonlinear biochemistry, and it may help to understand the mechanism underlying the observation of actin spots and waves in vivo. They also suggest a minimal setup to design similar patterns in vitro.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Cytoskeleton , Cell Movement , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...