Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 10: 136, 2016.
Article in English | MEDLINE | ID: mdl-27445731

ABSTRACT

Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model.

2.
J Neurosci ; 35(1): 396-408, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25568131

ABSTRACT

Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Disease Models, Animal , Fragile X Syndrome/enzymology , Neuronal Plasticity/physiology , Phosphodiesterase 4 Inhibitors/pharmacology , Animals , Animals, Genetically Modified , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Drosophila , Female , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Male , Mice , Mice, Knockout , Neuronal Plasticity/drug effects , Phosphodiesterase 4 Inhibitors/therapeutic use
3.
Orthop Clin North Am ; 43(5): e44-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23102421

ABSTRACT

Patellofemoral arthroplasty (PFA) is a viable treatment option of the patient with isolated patellofemoral arthritis. Some of the purported advantages of PFA compared with total knee arthroplasty (TKA) include less invasive approach, less bone resection and tissue destruction, decreased operative time, shorter rehabilitation, better knee kinematics, and decreased blood loss. This study compared the blood loss associated with PFA with that of a cohort of patients with TKA. A proposed benefit of partial knee arthroplasty is less blood loss. Patellofemoral replacement seems not to have this benefit and blood loss prevention initiatives similar to those of TKA should be maintained.


Subject(s)
Arthroplasty, Replacement , Blood Loss, Surgical , Blood Transfusion , Patellofemoral Joint , Aged , Arthroplasty, Replacement, Knee , Biomechanical Phenomena , Humans , Middle Aged , Retrospective Studies
4.
J Neurosci ; 30(28): 9510-22, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20631179

ABSTRACT

Alzheimer's disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced.


Subject(s)
Cognition/physiology , Learning/physiology , Memory/physiology , Presenilins/genetics , Age Factors , Analysis of Variance , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cognition/drug effects , Courtship , Drosophila melanogaster , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Learning/drug effects , Lithium/pharmacology , Male , Memory/drug effects , Mushroom Bodies/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Presenilins/metabolism , Random Allocation , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism
5.
Biogerontology ; 11(3): 347-62, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20039205

ABSTRACT

Fragile X syndrome afflicts 1 in 2,500 individuals and is the leading heritable cause of mental retardation worldwide. The overriding clinical manifestation of this disease is mild to severe cognitive impairment. Age-dependent cognitive decline has been identified in Fragile X patients, although it has not been fully characterized nor examined in animal models. A Drosophila model of this disease has been shown to display phenotypes bearing similarity to Fragile X symptoms. Most notably, we previously identified naive courtship and memory deficits in young adults with this model that appear to be due to enhanced metabotropic glutamate receptor (mGluR) signaling. Herein we have examined age-related cognitive decline in the Drosophila Fragile X model and found an age-dependent loss of learning during training. We demonstrate that treatment with mGluR antagonists or lithium can prevent this age-dependent cognitive impairment. We also show that treatment with mGluR antagonists or lithium during development alone displays differential efficacy in its ability to rescue naive courtship, learning during training and memory in aged flies. Furthermore, we show that continuous treatment during aging effectively rescues all of these phenotypes. These results indicate that the Drosophila model recapitulates the age-dependent cognitive decline observed in humans. This places Fragile X in a category with several other diseases that result in age-dependent cognitive decline. This demonstrates a role for the Drosophila Fragile X Mental Retardation Protein (dFMR1) in neuronal physiology with regard to cognition during the aging process. Our results indicate that misregulation of mGluR activity may be causative of this age onset decline and strengthens the possibility that mGluR antagonists and lithium may be potential pharmacologic compounds for counteracting several Fragile X symptoms.


Subject(s)
Aging/psychology , Cognition Disorders/drug therapy , Disease Models, Animal , Animals , Animals, Genetically Modified , Behavior, Animal , Drosophila , Female , Learning , Male , Memory
6.
Mol Biochem Parasitol ; 150(2): 288-99, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17014918

ABSTRACT

The emergence of chloroquine-resistant Plasmodium falciparum malaria imperils the lives of millions of people in Africa, Southeast Asia and South America. Chloroquine resistance is associated with mutations in the P. falciparum chloroquine resistance transporter (PfCRT). We expressed chloroquine-sensitive (HB3) and resistant (Dd2) pfcrt alleles in HEK293 human embryonic kidney cells. PfCRT localized to the lysosomal limiting membrane and was not detected in the plasma membrane. We observed significant acidification of lysosomes containing PfCRT HB3 and Dd2, with Dd2 acidifying significantly more than HB3. A mutant HB3 allele expressing the K76T mutation (earlier found to be key for chloroquine resistance) acidified to the same extent as Dd2, whereas the acidification by a Dd2 allele expressing the T76K "back mutation" was significantly less than Dd2. Thus, the amino acid at position 76 is both an important determinant of chloroquine resistance in parasites and of lysosomal acidification following heterologous expression. PfCRT may be capable of modulating the pH of the parasite digestive vacuole, and thus chloroquine availability. Chloroquine accumulation and glycyl-phenylalanine-2-naphthylamide-induced release of lysosomal Ca(2+) stores were unaffected by PfCRT expression. Cytoplasmic domain mutations did not alter PfCRT sorting to the lysosomal membrane. This heterologous expression system will be useful to characterize PfCRT protein structure and function, and elucidate its molecular role in chloroquine resistance.


Subject(s)
Chloroquine/pharmacology , Lysosomes/metabolism , Membrane Transport Proteins/physiology , Plasmodium falciparum/drug effects , Protozoan Proteins/physiology , Animals , Antimalarials/pharmacology , Calcium/metabolism , Cell Line , Drug Resistance , Humans , Hydrogen-Ion Concentration , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/physiology , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/physiology , Protein Sorting Signals , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Transfection
7.
Neuron ; 45(5): 753-64, 2005 Mar 03.
Article in English | MEDLINE | ID: mdl-15748850

ABSTRACT

Fragile X syndrome is a leading heritable cause of mental retardation that results from the loss of FMR1 gene function. A Drosophila model for Fragile X syndrome, based on the loss of dfmr1 activity, exhibits phenotypes that bear similarity to Fragile X-related symptoms. Herein, we demonstrate that treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium can rescue courtship and mushroom body defects observed in these flies. Furthermore, we demonstrate that dfmr1 mutants display cognitive deficits in experience-dependent modification of courtship behavior, and treatment with mGluR antagonists or lithium restores these memory defects. These findings implicate enhanced mGluR signaling as the underlying cause of the cognitive, as well as some of the behavioral and neuronal, phenotypes observed in the Drosophila Fragile X model. They also raise the possibility that compounds having similar effects on metabotropic glutamate receptors may ameliorate cognitive and behavioral defects observed in Fragile X patients.


Subject(s)
Courtship , Disease Models, Animal , Fragile X Syndrome/drug therapy , Mushroom Bodies/physiology , Neuronal Plasticity/physiology , Animals , Courtship/psychology , Drosophila , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/psychology , Lithium/pharmacology , Lithium/therapeutic use , Male , Memory/drug effects , Memory/physiology , Mushroom Bodies/drug effects , Neuronal Plasticity/drug effects , Synapses/drug effects , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...