Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(12): 113509, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38019651

ABSTRACT

Dysregulated neuronal excitability is a hallmark of amyotrophic lateral sclerosis (ALS). We sought to investigate how functional changes to the axon initial segment (AIS), the site of action potential generation, could impact neuronal excitability in ALS human induced pluripotent stem cell (hiPSC) motor neurons. We find that early TDP-43 and C9orf72 hiPSC motor neurons show an increase in the length of the AIS and impaired activity-dependent AIS plasticity that is linked to abnormal homeostatic regulation of neuronal activity and intrinsic hyperexcitability. In turn, these hyperactive neurons drive increased spontaneous myofiber contractions of in vitro hiPSC motor units. In contrast, late hiPSC and postmortem ALS motor neurons show AIS shortening, and hiPSC motor neurons progress to hypoexcitability. At a molecular level, aberrant expression of the AIS master scaffolding protein ankyrin-G and AIS-specific voltage-gated sodium channels mirror these dynamic changes in AIS function and excitability. Our results point toward the AIS as an important site of dysfunction in ALS motor neurons.


Subject(s)
Amyotrophic Lateral Sclerosis , Axon Initial Segment , Induced Pluripotent Stem Cells , Humans , Axon Initial Segment/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Action Potentials/physiology
2.
Biofabrication ; 15(4)2023 09 05.
Article in English | MEDLINE | ID: mdl-37619554

ABSTRACT

Many devastating neuromuscular diseases currently lack effective treatments. This is in part due to a lack of drug discovery platforms capable of assessing complex human neuromuscular disease phenotypes in a scalable manner. A major obstacle has been generating scaffolds to stabilise mature contractile myofibers in a multi-well assay format amenable to high content image (HCI) analysis. This study describes the development of a scalable human induced pluripotent stem cell (iPSC)-neuromuscular disease model, whereby suspended elastomer nanofibers support long-term stability, alignment, maturation, and repeated contractions of iPSC-myofibers, innervated by iPSC-motor neurons in 96-well assay plates. In this platform, optogenetic stimulation of the motor neurons elicits robust myofiber-contractions, providing a functional readout of neuromuscular transmission. Additionally, HCI analysis provides rapid and automated quantification of axonal outgrowth, myofiber morphology, and neuromuscular synapse number and morphology. By incorporating amyotrophic lateral sclerosis (ALS)-related TDP-43G298Smutant motor neurons and CRISPR-corrected controls, key neuromuscular disease phenotypes are recapitulated, including weaker myofiber contractions, reduced axonal outgrowth, and reduced number of neuromuscular synapses. Treatment with a candidate ALS drug, the receptor-interacting protein kinase-1 (RIPK1)-inhibitor necrostatin-1, rescues these phenotypes in a dose-dependent manner, highlighting the potential of this platform to screen novel treatments for neuromuscular diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Nanofibers , Neuromuscular Diseases , Humans , Elastomers
3.
Front Cell Dev Biol ; 11: 1163825, 2023.
Article in English | MEDLINE | ID: mdl-37333983

ABSTRACT

Bardet-Biedl syndrome (BBS) is a ciliopathy with pleiotropic effects on multiple tissues, including the kidney. Here we have compared renal differentiation of iPS cells from healthy and BBS donors. High content image analysis of WT1-expressing kidney progenitors showed that cell proliferation, differentiation and cell shape were similar in healthy, BBS1, BBS2, and BBS10 mutant lines. We then examined three patient lines with BBS10 mutations in a 3D kidney organoid system. The line with the most deleterious mutation, with low BBS10 expression, expressed kidney marker genes but failed to generate 3D organoids. The other two patient lines expressed near normal levels of BBS10 mRNA and generated multiple kidney lineages within organoids when examined at day 20 of organoid differentiation. However, on prolonged culture (day 27) the proximal tubule compartment degenerated. Introducing wild type BBS10 into the most severely affected patient line restored organoid formation, whereas CRISPR-mediated generation of a truncating BBS10 mutation in a healthy line resulted in failure to generate organoids. Our findings provide a basis for further mechanistic studies of the role of BBS10 in the kidney.

4.
Bio Protoc ; 13(5): e4624, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36908638

ABSTRACT

Human neuromuscular diseases represent a diverse group of disorders with unmet clinical need, ranging from muscular dystrophies, such as Duchenne muscular dystrophy (DMD), to neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS). In many of these conditions, axonal and neuromuscular synapse dysfunction have been implicated as crucial pathological events, highlighting the need for in vitro disease models that accurately recapitulate these aspects of human neuromuscular physiology. The protocol reported here describes the co-culture of neural spheroids composed of human pluripotent stem cell (PSC)-derived motor neurons and astrocytes, and human PSC-derived myofibers in 3D compartmentalised microdevices to generate functional human neuromuscular circuits in vitro. In this microphysiological model, motor axons project from a central nervous system (CNS)-like compartment along microchannels to innervate skeletal myofibers plated in a separate muscle compartment. This mimics the spatial organization of neuromuscular circuits in vivo. Optogenetics, particle image velocimetry (PIV) analysis, and immunocytochemistry are used to control, record, and quantify functional neuromuscular transmission, axonal outgrowth, and neuromuscular synapse number and morphology. This approach has been applied to study disease-specific phenotypes for DMD and ALS by incorporating patient-derived and CRISPR-corrected human PSC-derived motor neurons and skeletal myogenic progenitors into the model, as well as testing candidate drugs for rescuing pathological phenotypes. The main advantages of this approach are: i) its simple design; ii) the in vivo-like anatomical separation between CNS and peripheral muscle; and iii) the amenability of the approach to high power imaging. This opens up the possibility for carrying out live axonal transport and synaptic imaging assays in future studies, in addition to the applications reported in this study. Graphical abstract Graphical abstract abbreviations: Channelrhodopsin-2 (CHR2+), pluripotent stem cell (PSC), motor neurons (MNs), myofibers (MFs), neuromuscular junction (NMJ).

5.
Sci Rep ; 13(1): 2008, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737643

ABSTRACT

V3 spinal interneurons are a key element of the spinal circuits, which control motor function. However, to date, there are no effective ways of deriving a pure V3 population from human pluripotent stem cells. Here, we report a method for differentiation and isolation of spinal V3 interneurons, combining extrinsic factor-mediated differentiation and magnetic activated cell sorting. We found that differentiation of V3 progenitors can be enhanced with a higher concentration of Sonic Hedgehog agonist, as well as culturing cells in 3D format. To enable V3 progenitor purification from mixed differentiation cultures, we developed a transgene reporter, with a part of the regulatory region of V3-specific gene Nkx2-2 driving the expression of a membrane marker CD14. We found that in human cells, NKX2-2 initially exhibited co-labelling with motor neuron progenitor marker, but V3 specificity emerged as the differentiation culture progressed. At these later differentiation timepoints, we were able to enrich V3 progenitors labelled with CD14 to ~ 95% purity, and mature them to postmitotic V3 interneurons. This purification tool for V3 interneurons will be useful for in vitro disease modeling, studies of normal human neural development and potential cell therapies for disorders of the spinal cord.


Subject(s)
Human Embryonic Stem Cells , Humans , Cell Differentiation , Hedgehog Proteins/metabolism , Interneurons/metabolism , Motor Neurons/metabolism , Spinal Cord/metabolism , Homeobox Protein Nkx-2.2/genetics
6.
Adv Mater ; 34(18): e2110441, 2022 May.
Article in English | MEDLINE | ID: mdl-35231133

ABSTRACT

Generating skeletal muscle tissue that mimics the cellular alignment, maturation, and function of native skeletal muscle is an ongoing challenge in disease modeling and regenerative therapies. Skeletal muscle cultures require extracellular guidance and mechanical support to stabilize contractile myofibers. Existing microfabrication-based solutions are limited by complex fabrication steps, low throughput, and challenges in measuring dynamic contractile function. Here, the synthesis and characterization of a new biobased nanohybrid elastomer, which is electrospun into aligned nanofiber sheets to mimic the skeletal muscle extracellular matrix, is presented. The polymer exhibits remarkable hyperelasticity well-matched to that of native skeletal muscle (≈11-50 kPa), with ultimate strain ≈1000%, and elastic modulus ≈25 kPa. Uniaxially aligned nanofibers guide myoblast alignment, enhance sarcomere formation, and promote a ≈32% increase in myotube fusion and ≈50% increase in myofiber maturation. The elastomer nanofibers stabilize optogenetically controlled human induced pluripotent stem cell derived skeletal myofibers. When activated by blue light, the myofiber-nanofiber hybrid constructs maintain a significantly higher (>200%) contraction velocity and specific force (>280%) compared to conventional culture methods. The engineered myofibers exhibit a power density of ≈35 W m-3 . This system is a promising new skeletal muscle tissue model for applications in muscular disease modeling, drug discovery, and muscle regeneration.


Subject(s)
Induced Pluripotent Stem Cells , Nanofibers , Cell Differentiation , Elastomers , Humans , Muscle Fibers, Skeletal , Muscle, Skeletal , Tissue Engineering/methods , Tissue Scaffolds
7.
Sci Adv ; 7(37): eabi8787, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516770

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by dystrophin gene mutations leading to skeletal muscle weakness and wasting. Dystrophin is enriched at the neuromuscular junction (NMJ), but how NMJ abnormalities contribute to DMD pathogenesis remains unclear. Here, we combine transcriptome analysis and modeling of DMD patient-derived neuromuscular circuits with CRISPR-corrected isogenic controls in compartmentalized microdevices. We show that NMJ volumes and optogenetic motor neuron­stimulated myofiber contraction are compromised in DMD neuromuscular circuits, which can be rescued by pharmacological inhibition of TGFß signaling, an observation validated in a 96-well human neuromuscular circuit coculture assay. These beneficial effects are associated with normalization of dysregulated gene expression in DMD myogenic transcriptomes affecting NMJ assembly (e.g., MUSK) and axon guidance (e.g., SLIT2 and SLIT3). Our study provides a new human microphysiological model for investigating NMJ defects in DMD and assessing candidate drugs and suggests that enhancing neuromuscular connectivity may be an effective therapeutic strategy.

8.
Cell Rep ; 29(7): 2028-2040.e8, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722215

ABSTRACT

In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN.


Subject(s)
Axons/metabolism , Membrane Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Animals , COS Cells , Chlorocebus aethiops , Female , Humans , Male , Membrane Proteins/genetics , Mice , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism
9.
Adv Biosyst ; 3(7)2019 Jul.
Article in English | MEDLINE | ID: mdl-31428672

ABSTRACT

Motor neurons project axons from the hindbrain and spinal cord to muscle, where they induce myofibre contractions through neurotransmitter release at neuromuscular junctions. Studies of neuromuscular junction formation and homeostasis have been largely confined to in vivo models. In this study we have merged three powerful tools - pluripotent stem cells, optogenetics and microfabrication - and designed an open microdevice in which motor axons grow from a neural compartment containing embryonic stem cell-derived motor neurons and astrocytes through microchannels to form functional neuromuscular junctions with contractile myofibers in a separate compartment. Optogenetic entrainment of motor neurons in this reductionist neuromuscular circuit enhanced neuromuscular junction formation more than two-fold, mirroring the activity-dependence of synapse development in vivo. We incorporated an established motor neuron disease model into our system and found that coculture of motor neurons with SOD1G93A astrocytes resulted in denervation of the central compartment and diminished myofiber contractions, a phenotype which was rescued by the Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) inhibitor Necrostatin. This coculture system replicates key aspects of nerve-muscle connectivity in vivo and represents a rapid and scalable alternative to animal models of neuromuscular function and disease.

10.
Mol Ther ; 27(1): 87-101, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30446391

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease selectively targeting motor neurons in the brain and spinal cord. The reasons for differential motor neuron susceptibility remain elusive. We developed a stem cell-based motor neuron assay to study cell-autonomous mechanisms causing motor neuron degeneration, with implications for ALS. A small-molecule screen identified cyclopiazonic acid (CPA) as a stressor to which stem cell-derived motor neurons were more sensitive than interneurons. CPA induced endoplasmic reticulum stress and the unfolded protein response. Furthermore, CPA resulted in an accelerated degeneration of motor neurons expressing human superoxide dismutase 1 (hSOD1) carrying the ALS-causing G93A mutation, compared to motor neurons expressing wild-type hSOD1. A secondary screen identified compounds that alleviated CPA-mediated motor neuron degeneration: three kinase inhibitors and tauroursodeoxycholic acid (TUDCA), a bile acid derivative. The neuroprotective effects of these compounds were validated in human stem cell-derived motor neurons carrying a mutated SOD1 allele (hSOD1A4V). Moreover, we found that the administration of TUDCA in an hSOD1G93A mouse model of ALS reduced muscle denervation. Jointly, these results provide insights into the mechanisms contributing to the preferential susceptibility of ALS motor neurons, and they demonstrate the utility of stem cell-derived motor neurons for the discovery of new neuroprotective compounds.


Subject(s)
Motor Neurons/cytology , Stem Cells/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Humans , Indoles/pharmacology , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Mutation , Stem Cells/drug effects , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Taurochenodeoxycholic Acid/pharmacology
11.
Curr Opin Biotechnol ; 40: 75-81, 2016 08.
Article in English | MEDLINE | ID: mdl-27016703

ABSTRACT

Controlling muscle function is essential for human behaviour and survival, thus, impairment of motor function and muscle paralysis can severely impact quality of life and may be immediately life-threatening, as occurs in many cases of traumatic spinal cord injury (SCI) and in patients with amyotrophic lateral sclerosis (ALS). Repairing damaged spinal motor circuits, in either SCI or ALS, currently remains an elusive goal. Therefore alternative strategies are needed to artificially control muscle function and thereby enable essential motor tasks. This review focuses on recent advances towards restoring motor function, with a particular focus on stem cell-derived neuronal engraftment strategies, optogenetic control of motor function and the potential future translational application of these approaches.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Motor Activity/physiology , Neural Stem Cells/transplantation , Optogenetics/methods , Recovery of Function , Spinal Cord Injuries/therapy , Animals , Humans
12.
Front Mol Neurosci ; 7: 23, 2014.
Article in English | MEDLINE | ID: mdl-24744697

ABSTRACT

PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein-protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.

13.
Science ; 344(6179): 94-7, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24700859

ABSTRACT

Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.


Subject(s)
Light , Motor Neurons/physiology , Motor Neurons/transplantation , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Optogenetics , Animals , Axons/physiology , Cell Line , Channelrhodopsins , Electric Stimulation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Female , Hindlimb , Isometric Contraction , Mice , Mice, Inbred C57BL , Motor Neurons/cytology , Muscle Denervation , Muscle Fibers, Skeletal/physiology , Nerve Regeneration , Sciatic Nerve/physiology , Transfection , Transgenes
14.
Development ; 141(4): 784-94, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24496616

ABSTRACT

Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.


Subject(s)
Cadherins/metabolism , Embryonic Stem Cells/cytology , Motor Neurons/cytology , Octamer Transcription Factor-6/metabolism , Phrenic Nerve/embryology , Signal Transduction/physiology , Animals , Cell Differentiation/physiology , Diaphragm/innervation , Flow Cytometry , Homeodomain Proteins/metabolism , Mice , Motor Neurons/physiology , Phosphoproteins/metabolism , Phrenic Nerve/cytology , Protocadherins , Real-Time Polymerase Chain Reaction , Receptors, Notch/metabolism , Signal Transduction/genetics , Transcription Factors , Transcriptome
15.
PLoS One ; 6(1): e14565, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21283688

ABSTRACT

The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system.


Subject(s)
Avian Proteins/physiology , Mitogens/physiology , Neural Stem Cells/cytology , Neurogenesis , Receptors, Cell Surface/physiology , Animals , Cell Differentiation , Cell Proliferation , Chick Embryo , Neural Tube
16.
Dev Neurobiol ; 70(8): 549-64, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20506246

ABSTRACT

Vertebrate eye movements depend on the co-ordinated function of six extraocular muscles that are innervated by the oculomotor, trochlear, and abducens nerves. Here, we show that the diffusible factors, stromal cell-derived factor-1 (SDF-1) and hepatocyte growth factor (HGF), guide the development of these axon projections. SDF-1 is expressed in the mesenchyme around the oculomotor nerve exit point, and oculomotor axons fail to exit the neuroepithelium in mice mutant for the SDF-1 receptor CXCR4. Both SDF-1 and HGF are expressed in or around the ventral and dorsal oblique muscles, which are distal targets for the oculomotor and trochlear nerves, respectively, as well as in the muscles which are later targets for oculomotor axon branches. We find that in vitro SDF-1 and HGF promote the growth of oculomotor and trochlear axons, whereas SDF-1 also chemoattracts oculomotor axons. Oculomotor neurons show increased branching in the presence of SDF-1 and HGF singly or together. HGF promotes the growth of trochlear axons more than that of oculomotor axons. Taken together, these data point to a role for both SDF-1 and HGF in extraocular nerve projections and indicate that SDF-1 functions specifically in the development of the oculomotor nerve, including oculomotor axon branch formation to secondary muscle targets. HGF shows some specificity in preferentially enhancing development of the trochlear nerve.


Subject(s)
Axons/physiology , Chemokine CXCL12/metabolism , Chemotaxis/physiology , Hepatocyte Growth Factor/metabolism , Oculomotor Muscles/embryology , Oculomotor Muscles/innervation , Animals , Avian Proteins/metabolism , Cell Enlargement , Cells, Cultured , Chick Embryo , Coculture Techniques , Mesoderm/embryology , Mesoderm/physiology , Mice , Mice, Transgenic , Mutation , Neuroepithelial Cells/physiology , Oculomotor Muscles/physiology , Oculomotor Nerve/embryology , Oculomotor Nerve/physiology , Rats , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Trochlear Nerve/embryology , Trochlear Nerve/physiology
17.
Proc Natl Acad Sci U S A ; 106(11): 4477-82, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19246390

ABSTRACT

Anxiety disorders are the most prevalent mental disorders in developed societies. Although roles for the prefrontal cortex, amygdala, hippocampus and mediodorsal thalamus in anxiety disorders are well documented, molecular mechanisms contributing to the functions of these structures are poorly understood. Here we report that deletion of Lynx2, a mammalian prototoxin gene that is expressed at high levels in anxiety associated brain areas, results in elevated anxiety-like behaviors. We show that LYNX2 can bind to and modulate neuronal nicotinic receptors, and that loss of Lynx2 alters the actions of nicotine on glutamatergic signaling in the prefrontal cortex. Our data identify Lynx2 as an important component of the molecular mechanisms that control anxiety, and suggest that altered glutamatergic signaling in the prefrontal cortex of Lynx2 mutant mice contributes to increased anxiety-related behaviors.


Subject(s)
Anxiety , Behavior, Animal , Membrane Glycoproteins/physiology , Neuropeptides/physiology , Animals , Anxiety Disorders/etiology , Glutamic Acid , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Mutant Strains , Neuropeptides/genetics , Neuropeptides/metabolism , Protein Binding , Receptors, Nicotinic/metabolism , Synaptic Transmission
18.
Neuron ; 48(6): 949-64, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-16364899

ABSTRACT

Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the timing of motor axon in-growth to the limb. Lateral motor column (LMC) motor axons within spinal nerves are defasciculated as they grow toward the limb and converge in the plexus region. Medial and lateral LMC motor axons show dorso-ventral guidance defects in the forelimb. In contrast, Sema3F-Npn-2 signaling guides the axons of a medial subset of LMC neurons to the ventral limb, but plays no major role in regulating their fasciculation. Thus, Sema3A-Npn-1 and Sema3F-Npn-2 signaling control distinct steps of motor axon growth and guidance during the formation of spinal motor connections.


Subject(s)
Growth Cones/metabolism , Motor Neurons/metabolism , Neuropilins/metabolism , Semaphorins/metabolism , Signal Transduction/physiology , Spinal Cord/embryology , Animals , Body Patterning/physiology , Brachial Plexus/embryology , Cell Differentiation/physiology , Chick Embryo , Forelimb/embryology , Forelimb/innervation , Gene Expression Regulation, Developmental/physiology , Growth Cones/ultrastructure , Hindlimb/embryology , Hindlimb/innervation , Limb Buds/embryology , Limb Buds/innervation , Lumbosacral Plexus/embryology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Motor Neurons/cytology , Muscle, Skeletal/embryology , Muscle, Skeletal/innervation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Semaphorin-3A/genetics , Semaphorin-3A/metabolism , Spinal Cord/cytology , Spinal Cord/metabolism
19.
Neuron ; 47(5): 667-79, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16129397

ABSTRACT

Motor neurons, alone among neurons in the vertebrate CNS, extend axons out of the neural tube to innervate peripheral targets. Two classes of motor neurons, termed vMNs and dMNs, extend axons out of the neural tube via ventral and dorsal exit points, respectively, in accord with their homeodomain transcription factor repertoire. Downstream of these transcriptional codes, the cell surface receptors that shape initial motor axon trajectories have not been identified. We show here that the chemokine receptor Cxcr4 is expressed on the axons of vMNs as they follow their ventral trajectory, whereas its ligand, Cxcl12, is expressed by mesenchymal cells surrounding the ventral neural tube. Genetic studies reveal that Cxcl12-Cxcr4 signaling directs the ventral trajectory of spinal vMNs. In its absence, these neurons adopt a dMN-like trajectory, despite preservation of their vMN transcriptional identity. Thus, the status of Cxcr4 signaling helps to determine the initial axonal trajectory of mammalian motor neurons.


Subject(s)
Chemokines, CXC/physiology , Chemokines/physiology , Motor Neurons/physiology , Signal Transduction/physiology , Animals , Axons/physiology , Cell Movement , Cells, Cultured , Chemokine CXCL12 , Chemokines, CXC/biosynthesis , Chemokines, CXC/genetics , Flow Cytometry , Gene Expression Regulation , Growth Cones/physiology , Immunohistochemistry , In Situ Hybridization , Mice , Mutation/physiology , RNA, Messenger/biosynthesis , Rhombencephalon/cytology , Rhombencephalon/physiology , Spinal Cord/cytology
20.
J Neurosci ; 25(24): 5710-9, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15958737

ABSTRACT

The properties of mammalian spinal interneurons that underlie rhythmic locomotor networks remain poorly described. Using postnatal transgenic mice in which expression of green fluorescent protein is driven by the promoter for the homeodomain transcription factor Hb9, as well as Hb9-lacZ knock-in mice, we describe a novel population of glutamatergic interneurons located adjacent to the ventral commissure from cervical to midlumbar spinal cord levels. Hb9+ interneurons exhibit strong postinhibitory rebound and demonstrate pronounced membrane potential oscillations in response to chemical stimuli that induce locomotor activity. These data provide a molecular and physiological delineation of a small population of ventral spinal interneurons that exhibit homogeneous electrophysiological features, the properties of which suggest that they are candidate locomotor rhythm-generating interneurons.


Subject(s)
Homeodomain Proteins/genetics , Interneurons/physiology , Spinal Cord/physiology , Transcription Factors/genetics , Animals , Cattle , Electrophysiology , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Growth Hormone/genetics , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Transgenic , Promoter Regions, Genetic , RNA Splicing , Recombination, Genetic , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...