Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Cell Biol ; 107(5): 1809-16, 1988 Nov.
Article in English | MEDLINE | ID: mdl-2972731

ABSTRACT

We have shown previously that the regulatory subunit (RII) of a type II cAMP-dependent protein kinase is an integral component of the mammalian sperm flagellum (Horowitz, J.A., H. Toeg, and G.A. Orr. 1984. J. Biol. Chem. 259:832-838; Horowitz, J.A., W. Wasco, M. Leiser, and G.A. Orr. 1988. J. Biol. Chem. 263:2098-2104). The subcellular localization of this flagellum-associated RII in bovine caudal epididymal sperm was analyzed at electron microscope resolution with gold-conjugated secondary antibody labeling techniques using anti-RII monoclonal antibodies. By immunoblot analysis, the flagellum-associated RII was shown to interact with mAb 622 which cross reacts with both neural and nonneural isoforms of RII. In contrast, a neural specific monoclonal antibody (mAb 526) failed to interact with flagellar RII. In the midpiece of the demembranated sperm tail, gold label after mAb 622 incubation was primarily associated with the outer mitochondrial membrane. Although almost all specific labeling in the midpiece can be assigned to the mitochondria, in the principal piece, there is some labeling of the fibrous sheath. Labeling of the outer dense fibers and the axoneme was sparse. Specific labeling was virtually absent in the sperm head. Sections of sperm tails incubated in the absence of primary antisera or with mAb 526 showed little labeling. A beta-tubulin monoclonal antibody localized only to the 9 + 2 axoneme. These results raise the possibility that a type II cAMP-dependent protein kinase located at the outer mitochondrial membrane plays a role in the direct cAMP stimulation of mitochondrial respiration during sperm activation.


Subject(s)
Flagella/analysis , Protein Kinases/analysis , Adenosine Triphosphatases/physiology , Animals , Antibodies, Monoclonal , Antibody Specificity , Electrophoresis, Polyacrylamide Gel , Immunoblotting , Immunohistochemistry , Intracellular Membranes/analysis , Male , Mitochondria/analysis , Spermatozoa/cytology
2.
Cell Motil Cytoskeleton ; 9(1): 73-84, 1988.
Article in English | MEDLINE | ID: mdl-3356046

ABSTRACT

Structural and behavioral features of intact and permeabilized Paramecium tetraurelia have been defined as a basis for study of Ca2+ control of ciliary reversal. Motion analysis of living paramecia shows that all the cells in a population swim forward with gently curving spirals at speeds averaging 369 +/- 19 microns/second. Ciliary reversal occurs in 10% of the cell population per second. Living paramecia, quick-fixed for scanning electron microscopy (SEM), show metachronal waves and an effective stroke obliquely toward the posterior end of the cell. Upon treatment with Triton X-100, swimming ceases and both scanning and transmission electron microscopy reveal cilia that uniformly project perpendicularly from the cell surface. Thin sections of these cells indicate that the ciliary, cell, and outer alveolar membranes are greatly disrupted or entirely missing and that the cytoplasm is also disrupted. These permeabilized paramecia can be reactivated and are capable of motility and regulation of motility. Motion analysis of cells reactivated with Mg2+ and ATP in low Ca2+ buffer (pCa greater than 7) shows that 71% swim forward in straight or curved paths at speeds averaging 221 +/- 20 microns/second. When these cells are quick-fixed for SEM the metachronal wave patterns of living, forward swimming cells reappear. Motion analysis of permeabilized cells reactivated in high Ca2+ buffers (pCa 5.5) shows that 94% swim backward in tight spirals at a velocity averaging 156 +/- 7 microns/second. SEM reveals a metachronal wave pattern with an effective stroke toward the anterior region. Although the permeabilized cells do not reverse spontaneously, the pCa response is preserved and the Ca2+ switch remains intact. The ciliary axonemes are largely exposed to the external environment. Therefore, the behavioral responses of these permeabilized cells depend on interaction of Ca2+ with molecules that remain bound to the axonemes throughout the extraction and reactivation procedures.


Subject(s)
Cilia/physiology , Paramecium/physiology , Animals , Cell Movement/drug effects , Cilia/ultrastructure , Detergents/pharmacology , Microscopy, Electron , Microscopy, Electron, Scanning , Octoxynol , Paramecium/ultrastructure , Polyethylene Glycols/pharmacology
3.
Plant Physiol ; 72(2): 583-5, 1983 Jun.
Article in English | MEDLINE | ID: mdl-16663047

ABSTRACT

The ultrastructural changes observed in ethylene-induced abscission of tobacco flower pedicels (Nicotiana tabacum L. ;Little Turkish') were studied by the techniques of morphometric analysis. The surface area of the membranes, relative volume of the organelles, and the number of organelles were determined for both ethylene-treated and control cells. In pedicels exposed to ethylene for 4.5 to 5 hours, abscission was evident within the separation zone. The most significant change in cell structure was observed in the surface area of the rough endoplasmic reticulum which more than doubled with ethylene treatment of the tissue.

SELECTION OF CITATIONS
SEARCH DETAIL
...