Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Biophys J ; 69(1): 66-73, 1995 Jul.
Article in English | MEDLINE | ID: mdl-7669911

ABSTRACT

Total internal reflection microscopy (TIRM) monitors Brownian fluctuations in elevation as small as 1 nm by measuring the scattering of a single sphere illuminated by an evanescent wave when the sphere is levitated by colloidal forces such as electrostatic double-layer repulsion. From the Boltzmann distribution of elevations sampled by the sphere over time, the potential energy profile can be determined with a resolution of approximately 0.1 of the thermal energy kT. Thus, the interaction between a receptor-coated (goat, horse, or rabbit immunoglobulin G (IgG)) latex sphere and a protein A (SpA)-coated glass microscope slide was studied. A typical TIRM potential energy profile measured between a bare sphere and a bare glass plate, where the sphere fluctuates around the secondary potential energy minimum formed between double-layer repulsion and gravitational attraction, agrees well with DLVO theory. The interactions measured between IgG-coated spheres and SpA-coated slides, on the other hand, displayed a weaker repulsion compared with that observed between bare surfaces under the same conditions. Analysis of the results obtained between the coated surfaces suggests an additional attractive force. The decay length of this attraction correlates with the known dissociation constants for the binding of IgG with SpA in free solution.


Subject(s)
Immunoglobulin G , Ligands , Models, Theoretical , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/metabolism , Animals , Binding Sites , Goats/immunology , Horses/immunology , Kinetics , Mathematics , Rabbits/immunology , Scattering, Radiation
2.
Science ; 198(4316): 508-10, 1977 Nov 04.
Article in English | MEDLINE | ID: mdl-17842139

ABSTRACT

Mass spectrometric methods have long been suggested as ways of measuring (14)C/(12)C ratios for carbon dating. One problem has been to distinguish between (14)N and (14)C. With negative ions and a tandem electrostatic accelerator, the (14)N background is virtually absent and fewer than three (14)C atoms in 10(16) atoms of (12)C have been easily measured.

SELECTION OF CITATIONS
SEARCH DETAIL