Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 22(28): 285303, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21636881

ABSTRACT

The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores. Since the shape of the nanopores is critically important for their performance, in this work we focus on its analysis and study the dependence of the nanopore shape on the electron beam acceleration voltage. We show that the nanopore adopts a funnel-like shape, with a central pore penetrating the entire membrane, surrounded by an extended shallow-etched region at the top of the membrane. While the internal nanopore size was found to depend on the electron acceleration voltage, the nanopore edges extended beyond the primary electron beam spot size due to long-range effects, such as radiolysis and diffusion. Moreover, the size of the peripheral-etched region was found to be less dependent on the acceleration voltage. We also found that chemical etching is the rate-limiting step of the process and is only slightly dependent on the acceleration voltage. Furthermore, due to the chemical etch process the chemical composition of the nanopore rims was found to maintain the bulk membrane composition.

2.
Talanta ; 80(1): 338-45, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19782234

ABSTRACT

Immunosensors are powerful analytical tools in clinical and veterinary diagnostics. This has led us to design a chemiluminescent immunosensor aimed at identifying anti-Brucella antibodies using optical fibers as the transducer. In order to develop the optimal transducer, to achieve an optimal chemical modification thereby allowing an optimal covalent binding of the protein receptor, several cleaning strategies and silane coupling agents were investigated. Brucella killed organisms were used as a model receptor for quantifying anti-Brucella IgG antibodies in a suspension compared to conventional colorimetric and chemiluminescent ELISA. A silane-benzophenone derivative was selected as the best performing silane coupling agent: the optical fiber immunosensor (OFIS) has showed the lowest limit of detection at 0.207 microg/ml, compared to 0.828 microg/ml and 0.414 microg/ml achieved by colorimetric and chemiluminescent ELISAs, respectively. These results, together with the additional advantages of rapidity, lower reagent volumes and moderate operating conditions, have set the grounds for further study in order to adapt this platform for on-site diagnostics of brucellosis disease markers.


Subject(s)
Biosensing Techniques/methods , Brucella/chemistry , Luminescent Measurements/methods , Optical Fibers , Animals , Antibodies, Bacterial/immunology , Biosensing Techniques/instrumentation , Brucella/cytology , Brucella/immunology , Cattle , Cells, Immobilized , Enzyme-Linked Immunosorbent Assay , Immune Sera/immunology , Immunoglobulin G/immunology , Luminescence , Luminescent Measurements/instrumentation , Microscopy, Atomic Force , Models, Biological , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...