Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Integr Comp Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982258

ABSTRACT

Trade-offs resulting from the high demand of offspring production are a central focus of many subdisciplines within the field of biology. Yet, despite the historical and current interest on this topic, large gaps in our understanding of whole-organism trade-offs that occur in reproducing individuals remain, particularly as it relates to the nuances associated with female reproduction. This volume of Integrative and Comparative Biology (ICB) contains a series of papers that focus on reviewing trade-offs from the female-centered perspective of biology (i.e., a perspective that places female reproductive biology at the center of the topic being investigated or discussed). These papers represent some of the work showcased during our symposium held at the 2024 meeting of the Society for Integrative and Comparative Biology (SICB) in Seattle, Washington. In this roundtable discussion, we use a question-and-answer format to capture the diverse perspectives and voices involved in our symposium. We hope that the dialogue featured in this discussion will be used to motivate researchers interested in understanding trade-offs in reproducing females and provide guidance on future research endeavors.

2.
Integr Comp Biol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834533

ABSTRACT

Understanding how animals maximize reproductive success in variable environments is important in determining how populations will respond to increasingly extreme weather events predicted in the face of changing climates. Although temperature is generally considered a key factor in reproductive decisions, rainfall is also an important predictor of prey availability in arid environments. Here, we test the impact of weather (i.e., rainfall and temperature) on female reproductive investment in an arid-dwelling bird (i.e., clutch size and egg volume) and tradeoffs between the two. We predicted that female chestnut-crowned babblers (Pomatostomus ruficeps), endemic to the arid region of Australia, would increase clutch size at the expense of egg volume in response to variation in rainfall and temperature. We found that over 14 breeding seasons, clutch size decreased with increasing temperature, but increased following more rain. Egg volume, on the other hand, became larger as temperatures increased and, although not related to the amount of rain, was related to the number of days since the last rainfall. Finally, egg size decreased as clutch size increased, indicating a tradeoff between the two reproductive parameters. Our results suggest that chestnut-crowned babblers breed reactively in response to variable environments. We expect that clutch size variation in response to rain may reflect the impact of rain on arthropod abundance, whereas the effect of temperature may represent an established decline in clutch size observed in other seasonal breeders. As the tradeoff between clutch size and egg volume was modest, and clutch sizes were modified to a greater extent than egg volumes in response to rainfall, we suggest selection is more likely to increase offspring number than quality, at least in favorable years. Our results support the idea that reproductive investment is variable in fluctuating environments, which has implications for species living in habitats experiencing more extreme and less predictable weather as the global climate changes.

3.
PLoS One ; 19(3): e0298736, 2024.
Article in English | MEDLINE | ID: mdl-38507318

ABSTRACT

Despite a move toward gender parity in the United States (U.S.) workforce, a large gender gap persists in the fields of science, technology, engineering, and mathematics (STEM); this is particularly true for academic (i.e., instructor and tenure track) STEM positions. This gap increases as women advance through the traditional steps of academia, with the highest degree of gender disparity in tenured positions. As policies, politics, and culture, which all contribute to gender equity across the world, vary across regions in the United States, we expect that the gender gap in STEM might also vary across geographic regions. Here, we evaluated over 20,000 instructor and tenure track positions in university STEM departments across the U.S. to evaluate whether and how the geographic region of a university might determine its proportion of women in STEM academic positions. Similar to previous research, regardless of geographic region, more men were employed in both tenure track and instructor positions across STEM fields. However, variation existed regionally within the U.S., with the Mountain region employing the lowest proportion of women in tenure track positions and the East North Central and Pacific regions employing the greatest proportion. We expect this regional variation could be caused by differences in state and local policies, regional representation, and mentorship, resulting in inconsistent support for women, leading to differences in work environments, hiring, and job retention rates across the country. A better understanding of which geographic areas within the U.S. have more equal distributions of women in the STEM field will help us to identify the specific mechanisms that facilitate more equal and inclusive opportunities for women and other underrepresented groups across all levels of STEM academia.


Subject(s)
Educational Personnel , Engineering , Male , Humans , United States , Female , Technology , Faculty, Medical , Organizations
4.
Am Nat ; 200(5): 662-674, 2022 11.
Article in English | MEDLINE | ID: mdl-36260844

ABSTRACT

AbstractDuring range expansions, organisms can use epigenetic mechanisms to adjust to conditions in novel areas by altering gene expression and enabling phenotypic plasticity. Here, we predicted that the number of CpG sites within the genome, one form of epigenetic potential, would be important for successful range expansions because DNA methylation can modulate gene expression and, consequently, plasticity. We asked how the number of CpG sites and DNA methylation varied across five locations in the ∼70-year-old Kenyan house sparrow (Passer domesticus) range expansion. We found that the number of CpG sites was highest toward the vanguard of the invasion and decreased toward the range core. Analysis suggests that this pattern may have been driven by selection, favoring birds with more CpG sites at the range edge. However, we cannot rule out other processes, including nonrandom gene flow. Additionally, DNA methylation did not change across the range expansion, nor was it more variable. We hypothesize that as new areas are colonized, epigenetic potential may be selectively advantageous early but eventually be replaced by less plastic and perhaps genetically canalized traits as populations adapt to local conditions. Although further work is needed on epigenetic potential, this form (CpG number) appears to be a promising mechanism to investigate as a driver of expansions via capacitated phenotypic plasticity in other natural and anthropogenic range expansions.


Subject(s)
Sparrows , Animals , Sparrows/genetics , DNA Methylation , Kenya , Epigenesis, Genetic , Plastics
5.
Epigenomes ; 6(4)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36278679

ABSTRACT

DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.

6.
J Exp Biol ; 225(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35514228

ABSTRACT

To counterbalance demands of different selective pressures, many species possess morphological, physiological and behavioral specializations that increase survival in their environments. Predation is one such pressure that can elicit multiple adaptive responses, and the effectiveness of antipredator behaviors likely vary both by environment and individual across time. Chameleons use multiple antipredator strategies, many of which vary with body size and habitat type. Although their unique morphological and physiological traits produce relatively slow locomotion, which is poorly suited for fleeing, chameleons can also use crypsis or aggression to avoid predation. To examine the functional basis for variable antipredator behavioral responses, we subjected chameleons to a series of mock predation trials and determined how often individuals adopted each antipredator strategy, and then quantified the performance capacities underlying each strategy. In particular, we measured bite force as a determinant for aggression, sprint velocity for fleeing, and degree of color change for crypsis. We found that aggression was predicted by traits associated with higher absolute and relative bite force, as well as habitat type; fleeing was predicted by higher normalized sprint velocity and habitat type; and crypsis was predicted by habitat type, color change capacity in bird color space and the interaction between the two. These results illustrate the importance of considering both functional capacity and environmental context in antipredator behavior decision-making.


Subject(s)
Lizards , Animals , Bite Force , Body Size , Ecosystem , Humans , Lizards/physiology , Predatory Behavior/physiology
7.
J Comp Physiol B ; 192(3-4): 489-499, 2022 07.
Article in English | MEDLINE | ID: mdl-35596083

ABSTRACT

Muscles facilitate most animal behavior, from eating to fleeing. However, to generate the variation in behavior necessary for survival, different muscles must perform differently; for instance, sprinting requires multiple rapid muscle contractions, whereas biting may require fewer contractions but greater force. Here, we use a transcriptomic approach to identify genes associated with variation in muscle contractile physiology among different muscles from the same individual. We measured differential gene expression between a leg and jaw muscle of Anolis lizards known to differ in muscle contractile physiology and performance. For each individual, one muscle was used to measure muscle contractile physiology, including contractile velocity (Vmax and V40), specific tension, power ratio, and twitch time, whereas the contralateral muscle was used to extract RNA for transcriptomic sequencing. Using the transcriptomic data, we found clear clustering of muscle type. Expression of genes clustered in gene ontology (GO) terms related to muscle contraction and extracellular matrix was, on average, negatively correlated with Vmax and slower twitch times but positively correlated to power ratio and V40. Conversely, genes related to the GO terms related to aerobic respiration were downregulated in muscles with higher power ratio and V40, and over-expressed as twitch time decreased. Determining the molecular mechanisms that underlie variation in muscle contractile physiology can begin to explain how organisms are able to optimize behavior under variable conditions. Future studies pursuing the effects of differential gene expression across muscle types in different environments might inform researchers about how differences develop across species, populations, and individuals varying in ecological history.


Subject(s)
Lizards , Animals , Gene Expression , Lizards/genetics , Muscle Contraction , Muscle, Skeletal/physiology , Muscles/physiology
8.
PLoS One ; 16(6): e0252227, 2021.
Article in English | MEDLINE | ID: mdl-34086730

ABSTRACT

Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.


Subject(s)
DNA Methylation/genetics , Passeriformes/genetics , Songbirds/genetics , Animal Migration/physiology , Animals , Breeding/methods , Ecosystem , Female , Male , Population Dynamics , Reproduction/genetics
9.
J Evol Biol ; 34(3): 465-476, 2021 03.
Article in English | MEDLINE | ID: mdl-33325597

ABSTRACT

Phenotypic plasticity is hypothesized to facilitate adaptive responses to challenging conditions, such as those resulting from climate change. However, tests of the key predictions of this 'rescue hypothesis', that variation in plasticity exists and can evolve to buffer unfavourable conditions, remain rare. Here, we investigate among-female variation in temperature-mediated plasticity of incubation schedules and consequences for egg temperatures using the chestnut-crowned babbler (Pomatostomus ruficeps) from temperate regions of inland south-eastern Australia. Given recent phenological advances in this seasonal breeder and thermal requirements of developing embryos (>~25°C, optimally ~38°C), support for evolutionary rescue-perhaps paradoxically-requires that plasticity serves to buffer embryos more from sub-optimally low temperatures. We found significant variation in the duration of incubation bouts (mean ± SD = 27 ± 22 min) and foraging bouts (mean ± SD = 17 ± 11 min) in this maternal-only incubator. However, variation in each arose because of variation in the extent to which mothers increased on- and off-bout durations when temperatures (0-36°C) were more favourable rather than unfavourable as required under rescue. In addition, there was a strong positive intercept-slope correlation in on-bout durations, indicating that those with stronger plastic responses incubated more at average temperatures (~19°C). Combined, these effects reduced the functional significance of plastic responses: an individual's plasticity was neither associated with daily contributions to incubation (i.e. attentiveness) nor average egg temperatures. Our results highlight that despite significant among-individual variation in environmental-sensitivity, plasticity in parental care traits need not evolve to facilitate buffering against unfavourable conditions.


Subject(s)
Adaptation, Physiological , Biological Evolution , Climate Change , Nesting Behavior , Songbirds/genetics , Animals , Embryonic Development , Female , Songbirds/embryology
10.
Ecol Evol ; 8(1): 696-705, 2018 01.
Article in English | MEDLINE | ID: mdl-29321906

ABSTRACT

Projecting population responses to climate change requires an understanding of climatic impacts on key components of reproduction. Here, we investigate the associations among breeding phenology, climate and incubation schedules in the chestnut-crowned babbler (Pomatostomus ruficeps), a 50 g passerine with female-only, intermittent incubation that typically breeds from late winter (July) to early summer (November). During daylight hours, breeding females spent an average of 33 min on the nest incubating (hereafter on-bouts) followed by 24-min foraging (hereafter off-bouts), leading to an average daytime nest attentiveness of 60%. Nest attentiveness was 25% shorter than expected from allometric calculations, largely because off-bout durations were double the expected value for a species with 16 g clutches (4 eggs × 4 g/egg). On-bout durations and daily attentiveness were both negatively related to ambient temperature, presumably because increasing temperatures allowed more time to be allocated to foraging with reduced detriment to egg cooling. By contrast, on-bout durations were positively associated with wind speed, in this case because increasing wind speed exacerbated egg cooling during off-bouts. Despite an average temperature change of 12°C across the breeding season, breeding phenology had no effect on incubation schedules. This surprising result arose because of a positive relationship between temperature and wind speed across the breeding season: Any benefit of increasing temperatures was canceled by apparently detrimental consequences of increasing wind speed on egg cooling. Our results indicate that a greater appreciation for the associations among climatic variables and their independent effects on reproductive investment are necessary to understand the effects of changing climates on breeding phenology.

11.
J Hered ; 107(7): 654-659, 2016.
Article in English | MEDLINE | ID: mdl-27638815

ABSTRACT

Wildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important. We investigated one such lizard, the Six-lined Racerunner (Aspidoscelis sexlineata), which has a strong preference for open areas. We collected Six-lined Racerunners (n = 154) from 11 sites in Highlands County, FL, and defined 2 time-since-last-fire (TSF) categories: recently burned and long unburned. We screened genetic variation at 6 microsatellites to estimate genetic differentiation and compare genetic diversity among sites to determine the relationship with TSF. A clear pattern exists between genetic diversity and TSF in the absence of strong genetic differentiation. Genetic diversity was greater and inbreeding was lower in sites with more recent TSF, and genetic characteristics had significantly larger variance in long unburned sites compared with more recently burned sites. Our results suggest that fire suppression increases variance in genetic characteristics of the Six-lined Racerunner. More generally, fire may benefit genetic characteristics of some species that use fire-dependent habitats and management efforts for such severely fragmented habitat will be challenged by the presence of multiple species with incompatible fire preferences.


Subject(s)
Fires , Genetic Variation , Genetics, Population , Lizards/genetics , Animals , Ecosystem , Florida
12.
Gen Comp Endocrinol ; 211: 14-9, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25448257

ABSTRACT

The enemy release hypothesis (ERH) posits that hosts encounter fewer infectious parasites when they arrive in new areas, so individuals that adjust their immune defenses most effectively should thrive and even expand the range of that species. An important aspect of vertebrate immune defense is inflammation, as it provides rapid defense against diverse parasites. Glucocorticoids (GCs) are integral to the regulation of inflammation, so here we investigated whether and how covariation in the expression of genes affecting the regulation of inflammation and GCs might have impacted the house sparrow (Passer domesticus) invasion of Kenya. Toll-like receptors 2 and 4 (TLRs) detect microbial threats and instigate inflammatory responses, whereas the glucocorticoid receptor (GR) is integral to resolving inflammation via both local and systemic pathways. As with a previous study on circulating leukocytes, we found that splenic TLR-4 and TLR-2 (the latter marginally non-significant) expression was higher in younger than older populations but only when differences in spleen size were considered; birds at the range edge had larger spleens. In regards to covariation, we found that TLR-2, TLR-4 and GR expression were closely inter-related within individuals, but covariation did not differ among populations. Subsequently, our data suggest that house sparrows are using variants of a common stress-immune regulatory mechanism to expand their Kenyan range.


Subject(s)
Gene Expression Regulation , Homing Behavior , Sparrows/genetics , Sparrows/immunology , Stress, Physiological/genetics , Stress, Physiological/immunology , Animals , Cities , Kenya , Receptors, Glucocorticoid/metabolism , Spleen/metabolism , Toll-Like Receptors/metabolism
13.
Gen Comp Endocrinol ; 206: 227-34, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25125084

ABSTRACT

The mechanisms that enable animals to colonize new areas are little known, but growing evidence indicates that the regulation of stress hormones is important. Stress hormones probably influence invasions because they enable organisms to adjust their phenotypes depending on environmental context. Often, studies of stress hormones are based on single or a few samples from individuals even though the flexibility in the regulation of such hormones is what enables them to achieve homeostasis and facilitate performance. Here, we asked whether flexibility in the regulation of one stress hormone, corticosterone, was related to colonization success in one of the world's most successful avian invaders, the house sparrow (Passer domesticus). We studied Kenyan house sparrows, as the species was recently introduced there (around 1950) and has since expanded northwestward. Previous work in this system revealed that younger populations released more corticosterone during a restraint stressor than older populations. Our first goal was to discern whether such population differences were fixed or flexible in adulthood; our second goal was to determine whether individual identity explained any variation in corticosterone regulation. As before, we found that corticosterone responses to short-term restraint (i.e., stress responses), but not baseline corticosterone, were larger in younger populations. We also found that both baseline and stress-induced corticosterone measures were flexible; both metrics became similar among sites after one week of captivity. For stress responses, we also found that individual identity was important. Altogether, the present data suggest that the colonization of Kenya by house sparrows might have been facilitated by stress hormone regulatory flexibility.


Subject(s)
Corticosterone/blood , Sparrows/physiology , Stress, Physiological , Animals , Kenya , Phenotype , Population Dynamics
14.
Proc Biol Sci ; 281(1774): 20132690, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24258722

ABSTRACT

Interactions between hosts and parasites influence the success of host introductions and range expansions post-introduction. However, the physiological mechanisms mediating these outcomes are little known. In some vertebrates, variation in the regulation of inflammation has been implicated, perhaps because inflammation imparts excessive costs, including high resource demands and collateral damage upon encounter with novel parasites. Here, we tested the hypothesis that variation in the regulation of inflammation contributed to the spread of house sparrows (Passer domesticus) across Kenya, one of the world's most recent invasions of this species. Specifically, we asked whether inflammatory gene expression declines with population age (i.e. distance from Mombasa (dfM), the site of introduction around 1950). We compared expression of two microbe surveillance molecules (Toll-like receptors, TLRs-2 and 4) and a proinflammatory cytokine (interleukin-6, IL-6) before and after an injection of an immunogenic component of Gram-negative bacteria (lipopolysaccharide, LPS) among six sparrow populations. We then used a best-subset model selection approach to determine whether population age (dfM) or other factors (e.g. malaria or coccidian infection, sparrow density or genetic group membership) best-explained gene expression. For baseline expression of TLR-2 and TLR-4, population age tended to be the best predictor with expression decreasing with population age, although other factors were also important. Induced expression of TLRs was affected by LPS treatment alone. For induced IL-6, only LPS treatment reliably predicted expression; baseline expression was not explained by any factor. These data suggest that changes in microbe surveillance, more so than downstream control of inflammation via cytokines, might have been important to the house sparrow invasion of Kenya.


Subject(s)
Host-Pathogen Interactions/genetics , Passeriformes/microbiology , Animal Migration , Animals , Disease Resistance/genetics , Gene Expression , Geography , Introduced Species , Models, Biological , Passeriformes/genetics , Passeriformes/physiology , Population Density
15.
J Hered ; 105(1): 60-9, 2014.
Article in English | MEDLINE | ID: mdl-24336863

ABSTRACT

Introduced species offer an opportunity to study the ecological process of range expansions. Recently, 3 mechanisms have been identified that may resolve the genetic paradox (the seemingly unlikely success of introduced species given the expected reduction in genetic diversity through bottlenecks or founder effects): multiple introductions, high propagule pressure, and epigenetics. These mechanisms are probably also important in range expansions (either natural or anthropogenic), yet this possibility remains untested in vertebrates. We used microsatellite variation (7 loci) in house sparrows (Passer domesticus), an introduced species that has been spreading across Kenya for ~60 years, to determine if patterns of variation could explain how this human commensal overcame the genetic paradox and expresses such considerable phenotypic differentiation across this new range. We note that in some cases, polygenic traits and epistasis among genes, for example, may not have negative effects on populations. House sparrows arrived in Kenya by a single introduction event (to Mombasa, ~1950) and have lower genetic diversity than native European and introduced North American populations. We used Bayesian clustering of individuals (n = 233) to detect that at least 2 types of range expansion occurred in Kenya: one with genetic admixture and one with little to no admixture. We also found that genetic diversity increased toward a range edge, and the range expansion was consistent with long-distance dispersal. Based on these data, we expect that the Kenyan range expansion was anthropogenically influenced, as the expansions of other introduced human commensals may also be.


Subject(s)
Animal Distribution , Sparrows/classification , Sparrows/genetics , Animals , Bayes Theorem , Cluster Analysis , Founder Effect , Genetic Loci , Genetic Variation , Introduced Species , Kenya , Microsatellite Repeats , Phenotype , Phylogeography
16.
Biol Lett ; 9(3): 20130181, 2013 Jun 23.
Article in English | MEDLINE | ID: mdl-23576781

ABSTRACT

As ranges expand, individuals encounter different environments at the periphery than at the centre of the range. Previously, we have shown that glucocorticoids (GCs) vary with range expansion: individuals at the range edge release more GCs in response to restraint. Here, we measured hippocampal mRNA expression of GC receptors (mineralocorticoid, MR and glucocorticoid, GR) in eight house sparrow (Passer domesticus) populations varying in age. We found that individuals closest to the range edge had the lowest expression of MR relative to GR; in all likelihood, this relationship was driven by a marginal reduction of MR mRNA at the range edge. Reduced MR (relative to GR) might allow enhanced GC binding to GR, the lower affinity receptor that would enhance a rapid physiological and behavioural response to stressors. The insights gained from this study are not only enlightening to introduced species, but may also predict how certain species will react as their ranges shift owing to anthropogenic changes.


Subject(s)
Animal Migration , Receptors, Glucocorticoid/physiology , Sparrows/physiology , Animals , Likelihood Functions , RNA, Messenger/genetics , Receptors, Glucocorticoid/genetics
17.
Integr Comp Biol ; 53(2): 340-50, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23583961

ABSTRACT

Ecological Epigenetics studies the relationship between epigenetic variation and ecologically relevant phenotypic variation. As molecular epigenetic mechanisms often control gene expression, even across generations, they may impact many evolutionary processes. Multiple molecular epigenetic mechanisms exist, but methylation of DNA so far has dominated the Ecological Epigenetic literature. There are several molecular techniques used to screen methylation of DNA; here, we focus on the most common technique, methylation-sensitive-AFLP (MS-AFLP), which is used to identify genome-wide methylation patterns. We review studies that used MS-AFLP to address ecological questions, that describe which taxa have been investigated, and that identify general trends in the field. We then discuss, noting the general themes, four studies across taxa that demonstrate characteristics that increase the inferences that can be made from MS-AFLP data; we suggest that future MS-AFLP studies should incorporate these methods and techniques. We then review the short-comings of MS-AFLP and suggest alternative techniques that might address some of these limitations. Finally, we make specific suggestions for future research on MS-AFLP and identify questions that are most compelling and tractable in the short term.


Subject(s)
Amplified Fragment Length Polymorphism Analysis/trends , DNA Methylation/genetics , Ecology/trends , Epigenomics/trends , Amplified Fragment Length Polymorphism Analysis/methods , Animals , Biological Evolution , Genetic Variation , Phenotype
18.
Integr Comp Biol ; 53(2): 351-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23535948

ABSTRACT

The spread of invasive species presents a genetic paradox: how do individuals overcome the genetic barriers associated with introductions (e.g., bottlenecks and founder effects) to become adapted to the new environment? In addition to genetic diversity, epigenetic variation also contributes to phenotypic variation and could influence the spread of an introduced species in novel environments. This may occur through two different (non-mutually exclusive) mechanisms. Individuals may benefit from existing (and heritable) epigenetic diversity or de novo epigenetic marks may increase in response to the new environment; both mechanisms might increase flexibility in new environments. Although epigenetic changes in invasive plants have been described, no data yet exist on the epigenetic changes throughout a range expansion of a vertebrate. Here, we used methylation sensitive-amplified fragment length polymorphism to explore genome-wide patterns of methylation in an expanding population of house sparrows (Passer domesticus). House sparrows were introduced to Kenya in the 1950s and have significant phenotypic variation dependent on the time since colonization. We found that Kenyan house sparrows had high levels of variation in methylation across the genome. Interestingly, there was a significant, potentially compensatory relationship between epigenetic and genetic diversity: epigenetic diversity was negatively correlated with genetic diversity and positively correlated with inbreeding across the range expansion. Thus, methylation may increase phenotypic variation and/or plasticity in response to new environments and therefore be an important source of inter-individual variation for adaptation in these environments, particularly over the short timescales over which invasions occur.


Subject(s)
Adaptation, Physiological/genetics , DNA Methylation/genetics , Introduced Species , Songbirds/genetics , Sparrows/genetics , Animals , Environment , Epigenomics , Female , Founder Effect , Kenya , Male , Phenotype
19.
Gen Comp Endocrinol ; 183: 32-7, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23262276

ABSTRACT

Glucocorticoids (GCs) help individuals cope with changes throughout life; one such change is the seasonal transition through life-history stages. Previous research shows that many animals exhibit seasonal variation in baseline GCs and GC responses to stressors, but the effects of season on other aspects of GC regulation have been less studied. Moreover, whether elements of GC regulation covary within individuals and whether covariation changes seasonally has been not been investigated. Evolutionarily, strong linkages among GC regulatory elements is predicted to enhance system efficiency and regulation, however may reduce the plasticity necessary to ensure appropriate responses under varying conditions. Here, we measured corticosterone (CORT), the major avian GC, at baseline, after exposure to a restraint stressor, and in response to dexamethasone (to assess negative feedback capacity) in wild house sparrows (Passer domesticus) during the breeding and molting seasons. We also measured hippocampal mRNA expression of the two receptors primarily responsible for CORT regulation: the mineralocorticoid and glucocorticoid receptors (MR and GR, respectively). Consistent with previous studies, restraint-induced CORT was lower during molt than breeding, but negative-feedback was not influenced by season. Receptor gene expression was affected by season, however, as during breeding, the ratio of MR to GR expression was significantly lower than during molt. Furthermore, MR expression was negatively correlated with CORT released in response to a stressor, but only during molt. We found that individuals that most strongly up-regulated CORT in response to restraint were also most effective at reducing CORT via negative feedback; although these relationships were independent of season, they were stronger during molt.


Subject(s)
Glucocorticoids/metabolism , Seasons , Sparrows/metabolism , Animals , Corticosterone/blood , Hippocampus/metabolism , RNA, Messenger/metabolism , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Stress, Physiological , Up-Regulation
20.
Proc Biol Sci ; 279(1746): 4375-81, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22951742

ABSTRACT

Global anthropogenic changes are occurring at an unprecedented rate; one change, human-facilitated introduction of species outside their native range, has had significant ecological and economic impacts. Surprisingly, what traits facilitate range expansions post-introduction is relatively unknown. This information could help predict future expansions of introduced species as well as native species shifting their ranges as climate conditions change. Here, we asked whether specific behavioural and physiological traits were important in the ongoing expansion of house sparrows (Passer domesticus) across Kenya. We predicted that birds at the site of initial introduction (Mombasa, introduced approx. 1950) would behave and regulate corticosterone, a stress hormone, differently than birds at the range edge (Kakamega, approx. 885 km from Mombasa; colonized within the last 5 years). Specifically, we predicted greater exploratory behaviour and stronger corticosterone response to stressors in birds at the range edge, which may facilitate the identification, resolution and memory of stressors. Indeed, we found that distance from Mombasa (a proxy for population age) was a strong predictor of both exploratory behaviour and corticosterone release in response to restraint (but only while birds were breeding). These results suggest that certain behavioural and neuroendocrine traits may influence the ability of species to colonize novel habitats.


Subject(s)
Corticosterone/blood , Exploratory Behavior , Sparrows/physiology , Animal Distribution , Animals , Female , Introduced Species , Kenya , Male , Population Dynamics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...