Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 13(33): 39880-39893, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34378907

ABSTRACT

This work reports the design and fabrication of novel printed single-wall carbon nanotube (SWCNT) electrothermal Joule heating devices. The devices are directly deposited on unidirectional (UD) glass fiber (GF) fabrics. The GF-SWCNT Joule heaters were integrated during manufacturing as "system" plies in carbon fiber reinforced polymer (CFRP) composite laminates. Specific secondary functions were imparted on the composite laminate endowing thus a multifunctional character. The efficient out-of-oven curing (OOC) of a CFRP laminate was demonstrated using a sandwich configuration comprising top/bottom GF-SWCNT system plies. A total power consumption of ca. 10.5 kWh for the efficient polymerization of the thermoset matrix was required. Infrared thermography (IR-T) monitoring showed a uniform and stable temperature field before and after impregnation with epoxy resin. Quasi-static three-point bending and dynamic mechanical analysis (DMA) revealed a minor knock-down effect of the OOC-CFRP laminates properties compared to oven cured CFRPs, whereas the glass transition temperature (Tg) was almost identical. The OOC-CFRP laminates were efficient in providing additional functions such as deicing and self-sensing that are highly sought in the energy and transport sectors, i.e., wind turbine blades or aircraft wings. The novel modular design provides unique opportunities for large-area applications via multiple interconnected arrays of printed devices.

2.
ACS Appl Mater Interfaces ; 13(20): 24138-24153, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33988382

ABSTRACT

This study demonstrates for the first time a structural glass fiber-reinforced polymer (GFRP) composite laminate with efficient thermal energy harvesting properties as a thermoelectric generator (TEG). This TEG laminate was fabricated by stacking unidirectional glass fiber (GF) laminae coated with p- and n-type single-wall carbon nanotube (SWCNT) inks via a blade coating technique. According to their thermoelectric (TE) response, the p- and n-type GF-SWCNT fabrics exhibited Seebeck coefficients of +23 and -29 µV/K with 60 and 118 µW/m·K2 power factor values, respectively. The in-series p-n interconnection of the TE-enabled GF-SWCNT fabrics and their subsequent impregnation with epoxy resin effectively generated an electrical power output of 2.2 µW directly from a 16-ply GFRP TEG laminate exposed to a temperature difference (ΔT) of 100 K. Both experimental and modeling work validated the TE performance. The structural integrity of the multifunctional GFRP was tested by three-point bending coupled with online monitoring of the steady-state TE current (Isc) at a ΔΤ of 80 K. Isc was found to closely follow all transitions and discontinuities related to structural damage in the stress/strain curve, thus showing its potential to serve the functions of power generation and damage monitoring.

3.
Nanomaterials (Basel) ; 11(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921005

ABSTRACT

The scope of this work was to create, with melt mixing compounding process, novel nanocomposite filaments with enhanced properties that industry can benefit from, using commercially available materials, to enhance the performance of three-dimensional (3D) printed structures fabricated via fused filament fabrication (FFF) process. Silicon Dioxide (SiO2) nanoparticles (NPs) were selected as fillers for a polylactic acid (PLA) thermoplastic matrix at various weight % (wt.%) concentrations, namely, 0.5, 1.0, 2.0 and 4.0 wt.%. Tensile, flexural and impact test specimens were 3D printed and tested according to international standards and their Vickers microhardness was also examined. It was proven that SiO2 filler enhanced the overall strength at concentrations up to 1 wt.%, compared to pure PLA. Atomic force microscopy (AFM) was employed to investigate the produced nanocomposite extruded filaments roughness. Raman spectroscopy was performed for the 3D printed nanocomposites to verify the polymer nanocomposite structure, while thermogravimetric analysis (TGA) revealed the 3D printed samples' thermal stability. Scanning electron microscopy (SEM) was carried out for the interlayer fusion and fractography morphological characterization of the specimens. Finally, the antibacterial properties of the produced nanocomposites were investigated with a screening process, to evaluate their performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).

4.
Nanomaterials (Basel) ; 11(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922586

ABSTRACT

A waste-originated one-part alkali-activated nanocomposite is introduced herein as a novel thermoelectric material. For this purpose, single-walled carbon nanotubes (SWCNTs) were utilized as nanoinclusions to create an electrically conductive network within the investigated alkali-activated construction material. Thermoelectric and microstructure characteristics of SWCNT-alkali-activated nanocomposites were assessed after 28 days. Nanocomposites with 1.0 wt.% SWCNTs exhibited a multifunctional behavior, a combination of structural load-bearing, electrical conductivity, and thermoelectric response. These nanocomposites (1.0 wt.%) achieved the highest thermoelectric performance in terms of power factor (PF), compared to the lower SWCNTs' incorporations, namely 0.1 and 0.5 wt.%. The measured electrical conductivity (σ) and Seebeck coefficient (S) were 1660 S·m-1 and 15.8 µV·K-1, respectively, which led to a power factor of 0.414 µW·m-1·K-2. Consequently, they have been utilized as the building block of a thermoelectric generator (TEG) device, which demonstrated a maximum power output (Pout) of 0.695 µW, with a power density (PD) of 372 nW·m-2, upon exposure to a temperature gradient of 60 K. The presented SWCNT-alkali-activated nanocomposites could establish the pathway towards waste thermal energy harvesting and future sustainable civil engineering structures.

5.
Polymers (Basel) ; 12(12)2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33291285

ABSTRACT

In this study, the strain rate sensitivity of five different thermoplastic polymers processed via Fused Filament Fabrication (FFF) Additive Manufacturing (AM) is reported. Namely, Polylactic Acid (PLA), Acrylonitrile-Butadiene-Styrene (ABS), Polyethylene Terephthalate Glycol (PETG), Polyamide 6 (PA6), and Polypropylene (PP) were thoroughly investigated under static tensile loading conditions at different strain rates. Strain rates have been selected representing the most common applications of polymeric materials manufactured by Three-Dimensional (3D) Printing. Each polymer was exposed to five different strain rates in order to elucidate the dependency and sensitivity of the tensile properties, i.e., stiffness, strength, and toughness on the applied strain rate. Scanning Electron Microscopy (SEM) was employed to investigate the 3D printed samples' fractured surfaces, as a means to derive important information regarding the fracture process, the type of fracture (brittle or ductile), as well as correlate the fractured surface characteristics with the mechanical response under certain strain rate conditions. An Expectation-Maximization (EM) analysis was carried out. Finally, a comparison is presented calculating the strain rate sensitivity index "m" and toughness of all materials at the different applied strain rates.

6.
Biomimetics (Basel) ; 5(3)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887263

ABSTRACT

In this study, an industrially scalable method is reported for the fabrication of polylactic acid (PLA)/silver nanoparticle (AgNP) nanocomposite filaments by an in-situ reduction reactive melt mixing method. The PLA/AgNP nanocomposite filaments have been produced initially reducing silver ions (Ag+) arising from silver nitrate (AgNO3) precursor mixed in the polymer melt to elemental silver (Ag0) nanoparticles, utilizing polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), respectively, as macromolecular blend compound reducing agents. PEG and PVP were added at various concentrations, to the PLA matrix. The PLA/AgNP filaments have been used to manufacture 3D printed antimicrobial (AM) parts by Fused Filament Fabrication (FFF). The 3D printed PLA/AgNP parts exhibited significant AM properties examined by the reduction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria viability (%) experiments at 30, 60, and 120 min duration of contact (p < 0.05; p-value (p): probability). It could be envisaged that the 3D printed parts manufactured and tested herein mimic nature's mechanism against bacteria and in terms of antimicrobial properties, contact angle for their anti-adhesive behavior and mechanical properties could create new avenues for the next generation of low-cost and on-demand additive manufacturing produced personal protective equipment (PPE) as well as healthcare and nosocomial antimicrobial equipment.

7.
Polymers (Basel) ; 12(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32708989

ABSTRACT

In order to enhance the mechanical performance of three-dimensional (3D) printed structures fabricated via commercially available fused filament fabrication (FFF) 3D printers, novel nanocomposite filaments were produced herein following a melt mixing process, and further 3D printed and characterized. Titanium Dioxide (TiO2) and Antimony (Sb) doped Tin Oxide (SnO2) nanoparticles (NPs), hereafter denoted as ATO, were selected as fillers for a polymeric acrylonitrile butadiene styrene (ABS) thermoplastic matrix at various weight % (wt%) concentrations. Tensile and flexural test specimens were 3D printed, according to international standards. It was proven that TiO2 filler enhanced the overall tensile strength by 7%, the flexure strength by 12%, and the micro-hardness by 6%, while for the ATO filler, the corresponding values were 9%, 13%, and 6% respectively, compared to unfilled ABS. Atomic force microscopy (AFM) revealed the size of TiO2 (40 ± 10 nm) and ATO (52 ± 11 nm) NPs. Raman spectroscopy was performed for the TiO2 and ATO NPs as well as for the 3D printed nanocomposites to verify the polymer structure and the incorporated TiO2 and ATO nanocrystallites in the polymer matrix. The scope of this work was to fabricate novel nanocomposite filaments using commercially available materials with enhanced overall mechanical properties that industry can benefit from.

8.
Materials (Basel) ; 13(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512931

ABSTRACT

Additive manufacturing with cement-based materials needs sound approaches for the direct, seamless integration of reinforcement into structural and non-structural elements during their fabrication. Mineral-impregnated Carbon-Fibre (MCF) composites represent a new type of non-corrosive reinforcement that offers great potential in this regard. MCF not only exhibits high performance with respect to its mechanical characteristics and durability, but it also can be processed and shaped easily in the fresh state and, what is more, automated. This article describes different concepts for the continuous, fully automated integration of MCF reinforcement into 3D concrete printing based on layered extrusion. Moreover, for one of the approaches presented and discussed, namely 3D concrete printing with MCF supply from a continuous, stationary impregnation line and deposition of MCF between concrete filaments, a feasibility study was performed using a gantry 3D printer. Small-scale walls were printed and eventually used for the production of specimens for mechanical testing. Three-point bend tests performed on two different beam geometries showed a significant enhancement of both flexural strength and, more especially, deformability of the specimens reinforced with MCF in comparison to the specimens made of plain concrete.

9.
Materials (Basel) ; 13(11)2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32545376

ABSTRACT

Jute fibers (JFs) coated with multiwall carbon nanotubes (MWCNTs) have been introduced in a natural rubber (NR) matrix creating a three-dimensional (3D) electrically conductive percolated network. The JF-CNT endowed electrical conductivity and thermoelectric properties to the final composites. CNT networks fully covered the fiber surfaces as shown by the corresponding scanning electron microscopy (SEM) analysis. NR/JF-CNT composites, at 10, 20 and 30 phr (parts per hundred gram of rubber) have been manufactured using a two-roll mixing process. The highest value of electrical conductivity (σ) was 81 S/m for the 30 phr composite. Thermoelectric measurements revealed slight differences in the Seebeck coefficient (S), while the highest power factor (PF) was 1.80 × 10-2 µW/m K-2 for the 30 phr loading. The micromechanical properties and electrical response of the composite's conductive interface have been studied in peak force tapping quantitative nanomechanical (PFT QNM) and conductive atomic force microscopy (c-AFM) mode. The JF-CNT create an electrically percolated network at all fiber loadings endowing electrical and thermoelectric properties to the NR matrix, considered thus as promising thermoelectric stretchable materials.

10.
Materials (Basel) ; 10(4)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28772719

ABSTRACT

Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

11.
Materials (Basel) ; 10(5)2017 May 18.
Article in English | MEDLINE | ID: mdl-28772907

ABSTRACT

The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite's electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred.

SELECTION OF CITATIONS
SEARCH DETAIL
...