Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 42(16): 2789-96, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-19782987

ABSTRACT

Trabecular bone loss in human vertebral bone is characterised by thinning and eventual perforation of the horizontal trabeculae. Concurrently, vertical trabeculae are completely lost with no histological evidence of significant thinning. Such bone loss results in deterioration in apparent modulus and strength of the trabecular core. In this study, a voxel-based finite element program was used to model bone loss in three specimens of human vertebral trabecular bone. Three sets of analyses were completed. In Set 1, strain adaptive resorption was modelled, whereby elements which were subject to the lowest mechanical stimulus (principal strain) were removed. In Set 2, both strain adaptive and microdamage mechanisms of bone resorption were included. Perforation of vertical trabeculae occurred due to microdamage resorption of elements with strains that exceeded a damage threshold. This resulted in collapse of the trabecular network under compression loading for two of the specimens tested. In Set 3, the damage threshold strain was gradually increased as bone loss progressed, resulting in reduced levels of microdamage resorption. This mechanism resulted in trabecular architectures in which vertical trabeculae had been perforated and which exhibited similar apparent modulus properties compared to experimental values reported in the literature. Our results indicate that strain adaptive remodelling alone does not explain the deterioration in mechanical properties that have been observed experimentally. Our results also support the hypothesis that horizontal trabeculae are lost principally by strain adaptive resorption, while vertical trabeculae may be lost due to perforation from microdamage resorption followed by rapid strain adaptive resorption of the remaining unloaded trabeculae.


Subject(s)
Algorithms , Bone Resorption/physiopathology , Models, Biological , Spine/physiopathology , Spondylosis/physiopathology , Computer Simulation , Elastic Modulus , Finite Element Analysis , Humans , Stress, Mechanical
2.
Med Eng Phys ; 31(1): 108-15, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18555727

ABSTRACT

The purpose of this study was to investigate if standard analysis of the vibrational characteristics of trabecular architectures can be used to detect changes in the mechanical properties due to progressive bone loss. A cored trabecular specimen from a human lumbar vertebra was microCT scanned and a three-dimensional, virtual model in stereolithography (STL) format was generated. Uniform bone loss was simulated using a surface erosion algorithm. Rapid prototype (RP) replicas were manufactured from these virtualised models with 0%, 16% and 42% bone loss. Vibrational behaviour of the RP replicas was evaluated by performing a dynamic compression test through a frequency range using an electro-dynamic shaker. The acceleration and dynamic force responses were recorded and fast Fourier transform (FFT) analyses were performed to determine the response spectrum. Standard resonant frequency analysis and damping factor calculations were performed. The RP replicas were subsequently tested in compression beyond failure to determine their strength and modulus. It was found that the reductions in resonant frequency with increasing bone loss corresponded well with reductions in apparent stiffness and strength. This suggests that structural dynamics has the potential to be an alternative diagnostic technique for osteoporosis, although significant challenges must be overcome to determine the effect of the skin/soft tissue interface, the cortex and variabilities associated with in vivo testing.


Subject(s)
Bone Diseases/diagnosis , Bone and Bones/pathology , Models, Anatomic , Vibration , Aged, 80 and over , Biomechanical Phenomena , Bone Density , Bone Diseases/pathology , Bone Diseases/physiopathology , Bone and Bones/physiopathology , Female , Humans , Stress, Mechanical
3.
J Long Term Eff Med Implants ; 18(4): 269-88, 2008.
Article in English | MEDLINE | ID: mdl-20370640

ABSTRACT

The objective of this study was to investigate the effects of intervertebral disk degeneration on the flexibility of the thoracolumbar spine in flexion and extension, both experimentally and computationally. A seven-level biomechanically tested human cadaveric spine (T11-L5) and a 3D finite element model of the same thoracolumbar spine were used for this purpose. The anatomically accurate computer model was generated from detailed computed tomography images and included the vertebral shell, the trabecular centrum, cartilage endplates, intervertebral disks, seven spinal ligament groups, and the facet joints. The cadaveric spinal segment and the specimen-specific finite element model were subjected to various compressive loads ranging from 75 to 975 N using the follower load principle and an oscillating bending moment of +/-5 Nm applied in the sagittal plane. The biomechanical behavior of the finite element model of the spine was validated with the experimental mechanical test data for the corresponding physical thoracolumbar spine specimen. In addition, the effect of intervertebral disk material property variation within the thoracolumbar spinal column on the spinal flexibility was extensively studied. The results of this study provided significant insight into how mechanical properties of the intervertebral disk influence spinal flexibility along the thoracolumbar spinal column. It was found that in order to get comparable results between experimental and computed data, the material properties of the intervertebral disks had to vary along the spinal column. However, these effects are diminished with increasing axial compressive load. Because of the trend between disk properties and spinal level, we further concluded that there might be a mechanism at play that links endplate size, body weight fraction, and segmental flexibility. More studies are needed to further investigate that relationship.


Subject(s)
Intervertebral Disc Degeneration/physiopathology , Lumbar Vertebrae , Range of Motion, Articular , Thoracic Vertebrae , Biomechanical Phenomena , Cadaver , Elasticity , Finite Element Analysis , Humans , Models, Biological , Reproducibility of Results , Weight-Bearing
4.
Ann Biomed Eng ; 33(10): 1333-43, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16240082

ABSTRACT

Tissue engineering is developing into a less speculative science involving the careful interplay of numerous design parameters and multidisciplinary professionals. Problem solving abilities and state of the art research tools are required to develop solutions for a wide variety of clinical issues. One area of particular interest is orthopedic biomechanics, a field that is responsible for the treatment of over 700,000 vertebral fractures in the United States alone last year. Engineers are currently lacking the technology and knowledge required to govern the subsistence of cells in vivo, let alone the knowledge to create a functional tissue replacement for a whole organ. Despite this, advances in computer-aided tissue engineering are continually growing. Using a combinatory approach to scaffold design, patient-specific implants may be constructed. Computer-aided design, optimization of geometry using voxel finite element models or other optimization routines, creation of a library of architectures with specific material properties, rapid prototyping, and determination of a defect site using imaging modalities highlight the current availability of design resources. This study proposes a novel methodology from start to finish which could, in the future, be used to design a tissue-engineered construct for the replacement of an entire vertebral body.


Subject(s)
Bone Substitutes/chemistry , Computer-Aided Design , Prostheses and Implants , Prosthesis Design/methods , Spine/physiopathology , Therapy, Computer-Assisted/methods , Tissue Engineering/methods , Biocompatible Materials/analysis , Biocompatible Materials/chemistry , Bone Substitutes/analysis , Spine/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...