Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 21(4): 1006-16, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26165853

ABSTRACT

iSpectra is an open source and system-independent toolbox for the analysis of spectral images (SIs) recorded on energy-dispersive spectroscopy (EDS) systems attached to scanning electron microscopes (SEMs). The aim of iSpectra is to assign pixels with similar spectral content to phases, accompanied by cumulative phase spectra with superior counting statistics for quantification. Pixel-to-phase assignment starts with a threshold-based pre-sorting of spectra to create groups of pixels with identical elemental budgets, similar to a method described by van Hoek (2014). Subsequent merging of groups and re-assignments of pixels using elemental or principle component histogram plots enables the user to generate chemically and texturally plausible phase maps. A variety of standard image processing algorithms can be applied to groups of pixels to optimize pixel-to-phase assignments, such as morphology operations to account for overlapping excitation volumes over pixels located at phase boundaries. iSpectra supports batch processing and allows pixel-to-phase assignments to be applied to an unlimited amount of SIs, thus enabling phase mapping of large area samples like petrographic thin sections.

2.
Science ; 316(5829): 1323-5, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17540900

ABSTRACT

The evolution of the martian core is widely assumed to mirror the characteristics observed for Earth's core. Data from experiments performed on iron-sulfur and iron-nickel-sulfur systems at pressures corresponding to the center of Mars indicate that its core is presently completely liquid and that it will not form an outwardly crystallizing iron-rich inner core, as does Earth. Instead, planetary cooling will lead to core crystallization following either a "snowing-core" model, whereby iron-rich solids nucleate in the outer portions of the core and sink toward the center, or a "sulfide inner-core" model, where an iron-sulfide phase crystallizes to form a solid inner core.


Subject(s)
Evolution, Planetary , Mars , Crystallization , Iron , Pressure , Sulfides , Sulfur , Temperature
3.
Nature ; 428(6981): 409-12, 2004 Mar 25.
Article in English | MEDLINE | ID: mdl-15042086

ABSTRACT

The oxidation state recorded by rocks from the Earth's upper mantle can be calculated from measurements of the distribution of Fe3+ and Fe2+ between the constituent minerals. The capacity for minerals to incorporate Fe3+ may also be a significant factor controlling the oxidation state of the mantle, and high-pressure experimental measurements of this property might provide important insights into the redox state of the more inaccessible deeper mantle. Here we show experimentally that the Fe3+ content of aluminous silicate perovskite, the dominant lower-mantle mineral, is independent of oxygen fugacity. High levels of Fe3+ are present in perovskite even when it is in chemical equilibrium with metallic iron. Silicate perovskite in the lower mantle will, therefore, have an Fe3+/total Fe ratio of at least 0.6, resulting in a whole-rock ratio of over ten times that of the upper mantle. Consequently, the lower mantle must either be enriched in Fe3+ or Fe3+ must form by the disproportionation of Fe2+ to produce Fe3+ plus iron metal. We argue that the lower mantle contains approximately 1 wt% of a metallic iron-rich alloy. The mantle's oxidation state and siderophile element budget have probably been influenced by the presence of this alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...