Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cancer Res ; 83(3): 363-373, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36459564

ABSTRACT

The development of single-cell RNA sequencing (scRNA-seq) technologies has greatly contributed to deciphering the tumor microenvironment (TME). An enormous amount of independent scRNA-seq studies have been published representing a valuable resource that provides opportunities for meta-analysis studies. However, the massive amount of biological information, the marked heterogeneity and variability between studies, and the technical challenges in processing heterogeneous datasets create major bottlenecks for the full exploitation of scRNA-seq data. We have developed IMMUcan scDB (https://immucanscdb.vital-it.ch), a fully integrated scRNA-seq database exclusively dedicated to human cancer and accessible to nonspecialists. IMMUcan scDB encompasses 144 datasets on 56 different cancer types, annotated in 50 fields containing precise clinical, technological, and biological information. A data processing pipeline was developed and organized in four steps: (i) data collection; (ii) data processing (quality control and sample integration); (iii) supervised cell annotation with a cell ontology classifier of the TME; and (iv) interface to analyze TME in a cancer type-specific or global manner. This framework was used to explore datasets across tumor locations in a gene-centric (CXCL13) and cell-centric (B cells) manner as well as to conduct meta-analysis studies such as ranking immune cell types and genes correlated to malignant transformation. This integrated, freely accessible, and user-friendly resource represents an unprecedented level of detailed annotation, offering vast possibilities for downstream exploitation of human cancer scRNA-seq data for discovery and validation studies. SIGNIFICANCE: The IMMUcan scDB database is an accessible supportive tool to analyze and decipher tumor-associated single-cell RNA sequencing data, allowing researchers to maximally use this data to provide new insights into cancer biology.


Subject(s)
Neoplasms , Software , Humans , Gene Expression Profiling , Sequence Analysis, RNA , Single-Cell Gene Expression Analysis , Neoplasms/genetics , Single-Cell Analysis , Tumor Microenvironment/genetics
2.
Front Immunol ; 12: 666163, 2021.
Article in English | MEDLINE | ID: mdl-34135895

ABSTRACT

The reason why most individuals with COVID-19 have relatively limited symptoms while other develop respiratory distress with life-threatening complications remains unknown. Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from 103 patients with different severity levels of COVID-19 with that of 27 healthy and 22 influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-induced immune signature, including a dramatic defect in IFN responses, a reduction of toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin production, as well as an important over-expression of genes involved in metabolism and cell cycle in patients infected with SARS-CoV-2 compared to those infected with influenza viruses. These features also differed according to COVID-19 severity. Overall and specific gene expression patterns across groups can be visualized on an interactive website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to SARS-CoV-2 infection are discussed in the context of current studies, thereby improving our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.


Subject(s)
COVID-19/immunology , Influenza, Human/immunology , Humans , SARS-CoV-2/immunology , Transcriptome
3.
Metabolites ; 9(5)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052310

ABSTRACT

: Steroidomics studies face the challenge of separating analytical compounds with very similar structures (i.e., isomers). Liquid chromatography (LC) is commonly used to this end, but the shared core structure of this family of compounds compromises effective separations among the numerous chemical analytes with comparable physico-chemical properties. Careful tuning of the mobile phase gradient and an appropriate choice of the stationary phase can be used to overcome this problem, in turn modifying the retention times in different ways for each compound. In the usual workflow, this approach is suboptimal for the annotation of features based on retention times since it requires characterizing a library of known compounds for every fine-tuned configuration. We introduce a software solution, DynaStI, that is capable of annotating liquid chromatography-mass spectrometry (LC-MS) features by dynamically generating the retention times from a database containing intrinsic properties of a library of metabolites. DynaStI uses the well-established linear solvent strength (LSS) model for reversed-phase LC. Given a list of LC-MS features and some characteristics of the LC setup, this software computes the corresponding retention times for the internal database and then annotates the features using the exact masses with predicted retention times at the working conditions. DynaStI (https://dynasti.vital-it.ch) is able to automatically calibrate its predictions to compensate for deviations in the input parameters. The database also includes identification and structural information for each annotation, such as IUPAC name, CAS number, SMILES string, metabolic pathways, and links to external metabolomic or lipidomic databases.

5.
PLoS Biol ; 16(8): e2005750, 2018 08.
Article in English | MEDLINE | ID: mdl-30091978

ABSTRACT

Sleep is essential for optimal brain functioning and health, but the biological substrates through which sleep delivers these beneficial effects remain largely unknown. We used a systems genetics approach in the BXD genetic reference population (GRP) of mice and assembled a comprehensive experimental knowledge base comprising a deep "sleep-wake" phenome, central and peripheral transcriptomes, and plasma metabolome data, collected under undisturbed baseline conditions and after sleep deprivation (SD). We present analytical tools to interactively interrogate the database, visualize the molecular networks altered by sleep loss, and prioritize candidate genes. We found that a one-time, short disruption of sleep already extensively reshaped the systems genetics landscape by altering 60%-78% of the transcriptomes and the metabolome, with numerous genetic loci affecting the magnitude and direction of change. Systems genetics integrative analyses drawing on all levels of organization imply α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and fatty acid turnover as substrates of the negative effects of insufficient sleep. Our analyses demonstrate that genetic heterogeneity and the effects of insufficient sleep itself on the transcriptome and metabolome are far more widespread than previously reported.


Subject(s)
Mice, Inbred Strains/genetics , Mice/genetics , Sleep/genetics , Animals , Databases, Factual , Metabolome/genetics , Sleep Deprivation/genetics , Transcriptome/genetics
6.
Diabetologia ; 61(3): 641-657, 2018 03.
Article in English | MEDLINE | ID: mdl-29185012

ABSTRACT

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Subject(s)
Biological Specimen Banks , Diabetes Mellitus, Type 2/metabolism , Systems Biology/methods , Tissue Donors , Transcriptome/genetics , Aged , Aged, 80 and over , Computational Biology , Female , Humans , Male , Pancreatectomy
8.
Mol Metab ; 6(4): 340-351, 2017 04.
Article in English | MEDLINE | ID: mdl-28377873

ABSTRACT

OBJECTIVE: In type 2 diabetes (T2D), pancreatic ß cells become progressively dysfunctional, leading to a decline in insulin secretion over time. In this study, we aimed to identify key genes involved in pancreatic beta cell dysfunction by analyzing multiple mouse strains in parallel under metabolic stress. METHODS: Male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular chow diet for three months. Pancreatic islets were extracted and phenotypic measurements were recorded at 2 days, 10 days, 30 days, and 90 days to assess diabetes progression. RNA-Seq was performed on islet tissue at each time-point and integrated with the phenotypic data in a network-based analysis. RESULTS: A module of co-expressed genes was selected for further investigation as it showed the strongest correlation to insulin secretion and oral glucose tolerance phenotypes. One of the predicted network hub genes was Elovl2, encoding Elongase of very long chain fatty acids 2. Elovl2 silencing decreased glucose-stimulated insulin secretion in mouse and human ß cell lines. CONCLUSION: Our results suggest a role for Elovl2 in ensuring normal insulin secretory responses to glucose. Moreover, the large comprehensive dataset and integrative network-based approach provides a new resource to dissect the molecular etiology of ß cell failure under metabolic stress.


Subject(s)
Acetyltransferases/genetics , Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Acetyltransferases/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , Fatty Acid Elongases , Gene Regulatory Networks , Glucose/metabolism , Humans , Insulin Secretion , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype
9.
BMC Bioinformatics ; 18(1): 151, 2017 Mar 04.
Article in English | MEDLINE | ID: mdl-28259142

ABSTRACT

BACKGROUND: The purpose of gene set enrichment analysis (GSEA) is to find general trends in the huge lists of genes or proteins generated by many functional genomics techniques and bioinformatics analyses. RESULTS: Here we present SetRank, an advanced GSEA algorithm which is able to eliminate many false positive hits. The key principle of the algorithm is that it discards gene sets that have initially been flagged as significant, if their significance is only due to the overlap with another gene set. The algorithm is explained in detail and its performance is compared to that of other methods using objective benchmarking criteria. Furthermore, we explore how sample source bias can affect the results of a GSEA analysis. CONCLUSIONS: The benchmarking results show that SetRank is a highly specific tool for GSEA. Furthermore, we show that the reliability of results can be improved by taking sample source bias into account. SetRank is available as an R package and through an online web interface.


Subject(s)
Algorithms , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Brain/metabolism , Genome, Human , Genomics , Humans , Models, Theoretical , Neoplasms/genetics , Reproducibility of Results , Sensitivity and Specificity
10.
Cell Rep ; 18(9): 2269-2279, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28249170

ABSTRACT

Plasma metabolite concentrations reflect the activity of tissue metabolic pathways and their quantitative determination may be informative about pathogenic conditions. We searched for plasma lipid species whose concentrations correlate with various parameters of glucose homeostasis and susceptibility to type 2 diabetes (T2D). Shotgun lipidomic analysis of the plasma of mice from different genetic backgrounds, which develop a pre-diabetic state at different rates when metabolically stressed, led to the identification of a group of sphingolipids correlated with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in the plasma of individuals from two population-based prospective cohorts revealed that specific long-chain fatty-acid-containing dihydroceramides were significantly elevated in the plasma of individuals who will progress to diabetes up to 9 years before disease onset. These lipids may serve as early biomarkers of, and help identify, metabolic deregulation in the pathogenesis of T2D.


Subject(s)
Biomarkers/blood , Ceramides/blood , Diabetes Mellitus, Type 2/blood , Disease Susceptibility/blood , Adult , Aged , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Glucose Intolerance/blood , Glucose Intolerance/metabolism , Glucose Tolerance Test/methods , Humans , Insulin/blood , Insulin Resistance/physiology , Lipids/blood , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Middle Aged , Prospective Studies , Sphingolipids/blood
11.
Elife ; 52016 11 25.
Article in English | MEDLINE | ID: mdl-27885988

ABSTRACT

Global disease suitability models are essential tools to inform surveillance systems and enable early detection. We present the first global suitability model of highly pathogenic avian influenza (HPAI) H5N1 and demonstrate that reliable predictions can be obtained at global scale. Best predictions are obtained using spatial predictor variables describing host distributions, rather than land use or eco-climatic spatial predictor variables, with a strong association with domestic duck and extensively raised chicken densities. Our results also support a more systematic use of spatial cross-validation in large-scale disease suitability modelling compared to standard random cross-validation that can lead to unreliable measure of extrapolation accuracy. A global suitability model of the H5 clade 2.3.4.4 viruses, a group of viruses that recently spread extensively in Asia and the US, shows in comparison a lower spatial extrapolation capacity than the HPAI H5N1 models, with a stronger association with intensively raised chicken densities and anthropogenic factors.


Subject(s)
Genotype , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Animals , Birds , Epidemiologic Methods , Forecasting , Global Health , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Models, Statistical , Molecular Epidemiology , Poultry , Spatial Analysis
12.
BMC Bioinformatics ; 17(1): 410, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27716031

ABSTRACT

BACKGROUND: Prior knowledge networks (PKNs) provide a framework for the development of computational biological models, including Boolean models of regulatory networks which are the focus of this work. PKNs are created by a painstaking process of literature curation, and generally describe all relevant regulatory interactions identified using a variety of experimental conditions and systems, such as specific cell types or tissues. Certain of these regulatory interactions may not occur in all biological contexts of interest, and their presence may dramatically change the dynamical behaviour of the resulting computational model, hindering the elucidation of the underlying mechanisms and reducing the usefulness of model predictions. Methods are therefore required to generate optimized contextual network models from generic PKNs. RESULTS: We developed a new approach to generate and optimize Boolean networks, based on a given PKN. Using a genetic algorithm, a model network is built as a sub-network of the PKN and trained against experimental data to reproduce the experimentally observed behaviour in terms of attractors and the transitions that occur between them under specific perturbations. The resulting model network is therefore contextualized to the experimental conditions and constitutes a dynamical Boolean model closer to the observed biological process used to train the model than the original PKN. Such a model can then be interrogated to simulate response under perturbation, to detect stable states and their properties, to get insights into the underlying mechanisms and to generate new testable hypotheses. CONCLUSIONS: Generic PKNs attempt to synthesize knowledge of all interactions occurring in a biological process of interest, irrespective of the specific biological context. This limits their usefulness as a basis for the development of context-specific, predictive dynamical Boolean models. The optimization method presented in this article produces specific, contextualized models from generic PKNs. These contextualized models have improved utility for hypothesis generation and experimental design. The general applicability of this methodological approach makes it suitable for a variety of biological systems and of general interest for biological and medical research. Our method was implemented in the software optimusqual, available online at http://www.vital-it.ch/software/optimusqual/ .


Subject(s)
Algorithms , Computer Simulation , Gene Regulatory Networks , Knowledge Bases , Models, Genetic , Humans , Models, Biological , Publications , Software
13.
Sci Rep ; 6: 30316, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27453195

ABSTRACT

The highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Asia since 2003 and diversified into several genetic lineages, or clades. Although the spatial distribution of its outbreaks was extensively studied, differences in clades were never previously taken into account. We developed models to quantify associations over time and space between different HPAI H5N1 viruses from clade 1, 2.3.4 and 2.3.2 and agro-ecological factors. We found that the distribution of clades in the Mekong region from 2004 to 2013 was strongly regionalised, defining specific epidemiological zones, or epizones. Clade 1 became entrenched in the Mekong Delta and was not supplanted by newer clades, in association with a relatively higher presence of domestic ducks. In contrast, two new clades were introduced (2.3.4 and 2.3.2) in northern Viet Nam and were associated with higher chicken density and more intensive chicken production systems. We suggest that differences in poultry production systems in these different epizones may explain these associations, along with differences in introduction pressure from neighbouring countries. The different distribution patterns found at the clade level would not be otherwise apparent through analysis treating all outbreaks equally, which requires improved linking of disease outbreak records and genetic sequence data.


Subject(s)
Genotype , Influenza A Virus, H5N1 Subtype/classification , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Influenza in Birds/virology , Spatial Analysis , Agriculture , Animals , Chickens , Disease Outbreaks , Ducks , Geography , Phylogeny , Phylogeography , Poultry Diseases/epidemiology , Poultry Diseases/virology , Socioeconomic Factors , Vietnam/epidemiology
14.
Sci Rep ; 6: 26822, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27241320

ABSTRACT

The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.


Subject(s)
Heart/physiology , Myocardium/metabolism , Regeneration , Animals , Gene Expression , Heart Injuries/physiopathology , Transcriptome , Zebrafish , Zebrafish Proteins/genetics
15.
NPJ Syst Biol Appl ; 2: 16037, 2016.
Article in English | MEDLINE | ID: mdl-28725481

ABSTRACT

Survival analyses based on the Kaplan-Meier estimate have been pervasively used to support or validate the relevance of biological mechanisms in cancer research. Recently, with the appearance of gene expression high-throughput technologies, this kind of analysis has been applied to tumor transcriptomics data. In a 'bottom-up' approach, gene-expression profiles that are associated with a deregulated pathway hypothetically involved in cancer progression are first identified and then subsequently correlated with a survival effect, which statistically supports or requires the rejection of such a hypothesis. In this work, we propose a 'top-down' approach, in which the clinical outcome (survival) is the starting point that guides the identification of deregulated biological mechanisms in cancer by a non-hypothesis-driven iterative survival analysis. We show that the application of our novel method to a population of ~2,000 breast cancer patients of the METABRIC consortium allows the identification of several well-known cancer mechanisms, such as ERBB4, HNF3A and TGFB pathways, and the investigation of their paradoxical dual effect. In addition, several novel biological mechanisms are proposed as potentially involved in cancer progression. The proposed exploratory methodology can be considered both alternative and complementary to classical 'bottom-up' approaches for validation of biological hypotheses. We propose that our method may be used to better characterize cancer, and may therefore impact the future design of therapies that are truly molecularly tailored to individual patients. The method, named SURCOMED, was implemented as a web-based tool, which is publicly available at http://surcomed.vital-it.ch. R scripts are also available at http://surcomed.sourceforge.net).

16.
Bioinformatics ; 31(17): 2860-6, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25943471

ABSTRACT

MOTIVATION: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. RESULTS: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology-SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. AVAILABILITY: SwissLipids is freely available at http://www.swisslipids.org/. CONTACT: alan.bridge@isb-sib.ch SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Databases, Factual , Knowledge Bases , Lipid Metabolism , Lipids/chemistry , Lipids/physiology , Mass Spectrometry/methods , Humans , Lipids/analysis
17.
PLoS Comput Biol ; 11(3): e1004050, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25768678

ABSTRACT

Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.


Subject(s)
Breast Neoplasms/physiopathology , Models, Biological , Monocytes/physiology , Neovascularization, Pathologic/physiopathology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Line , Computational Biology , Cytokines/metabolism , Cytokines/physiology , Female , Humans , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Middle Aged , Monocytes/chemistry , Monocytes/classification , Neoplasms, Experimental , Phenotype , Signal Transduction/physiology
18.
Database (Oxford) ; 2014: bau008, 2014.
Article in English | MEDLINE | ID: mdl-24608033

ABSTRACT

Combining epidemiological information, genetic characterization and geomapping in the analysis of influenza can contribute to a better understanding and description of influenza epidemiology and ecology, including possible virus reassortment events. Furthermore, integration of information such as agroecological farming system characteristics can provide new knowledge on risk factors of influenza emergence and spread. Integrating viral characteristics into an animal disease information system is therefore expected to provide a unique tool to trace-and-track particular virus strains; generate clade distributions and spatiotemporal clusters; screen for distribution of viruses with specific molecular markers; identify potential risk factors; and analyze or map viral characteristics related to vaccines used for control and/or prevention. For this purpose, a genetic module was developed within EMPRES-i (FAO's global animal disease information system) linking epidemiological information from influenza events with virus characteristics and enabling combined analysis. An algorithm was developed to act as the interface between EMPRES-i disease event data and publicly available influenza virus sequences in OpenfluDB. This algorithm automatically computes potential links between outbreak event and sequences, which are subsequently manually validated by experts. Subsequently, other virus characteristics such as antiviral resistance can then be associated to outbreak data. To visualize such characteristics on a geographic map, shape files with virus characteristics to overlay on other EMPRES-i map layers (e.g. animal densities) can be generated. The genetic module allows export of associated epidemiological and sequence data for further analysis. FAO has made this tool available for scientists and policy makers. Contributions are expected from users to improve and validate the number of linked influenza events and isolate information as well as the quality of information. Possibilities to interconnect with other influenza sequence databases or to expand the genetic module to other viral diseases (e.g. foot and mouth disease) are being explored. Database OpenfluDB URL: http://openflu.vital-it.ch Database EMPRES-i URL: http://EMPRES-i.fao.org/.


Subject(s)
Algorithms , Computational Biology/methods , Databases, Genetic , Disease Outbreaks , Influenza, Human/epidemiology , Influenza, Human/virology , Orthomyxoviridae/genetics , Humans , Influenza, Human/genetics , Orthomyxoviridae/isolation & purification , Reproducibility of Results
19.
J Vis Exp ; (71)2013 Jan 06.
Article in English | MEDLINE | ID: mdl-23329157

ABSTRACT

Laser microdissection (LMD) is a technique that allows the recovery of selected cells and tissues from minute amounts of parenchyma. The dissected cells can be used for a variety of investigations, such as transcriptomic or proteomic studies, DNA assessment or chromosomal analysis. An especially challenging application of LMD is transcriptome analysis, which, due to the lability of RNA, can be particularly prominent when cells are dissected from tissues that are rich of RNases, such as the pancreas. A microdissection protocol that enables fast identification and collection of target cells is essential in this setting in order to shorten the tissue handling time and, consequently, to ensure RNA preservation. Here we describe a protocol for acquiring human pancreatic beta cells from surgical specimens to be used for transcriptomic studies. Small pieces of pancreas of about 0.5-1 cm(3) were cut from the healthy appearing margins of resected pancreas specimens, embedded in Tissue-Tek O.C.T. Compound, immediately frozen in chilled 2-Methylbutane, and stored at -80 °C until sectioning. Forty serial sections of 10 µm thickness were cut on a cryostat under a -20 °C setting, transferred individually to glass slides, dried inside the cryostat for 1-2 min, and stored at -80 °C. Immediately before the laser microdissection procedure, sections were fixed in ice cold, freshly prepared 70% ethanol for 30 sec, washed by 5-6 dips in ice cold DEPC-treated water, and dehydrated by two one-minute incubations in ice cold 100% ethanol followed by xylene (which is used for tissue dehydration) for 4 min; tissue sections were then air-dried afterwards for 3-5 min. Importantly, all steps, except the incubation in xylene, were performed using ice-cold reagents - a modification over a previously described protocol. utilization of ice cold reagents resulted in a pronounced increase of the intrinsic autofluorescence of beta cells, and facilitated their recognition. For microdissection, four sections were dehydrated each time: two were placed into a foil-wrapped 50 ml tube, to protect the tissue from moisture and bleaching; the remaining two were immediately microdissected. This procedure was performed using a PALM MicroBeam instrument (Zeiss) employing the Auto Laser Pressure Catapulting (AutoLPC) mode. The completion of beta cell/islet dissection from four cryosections required no longer than 40-60 min. Cells were collected into one AdhesiveCap and lysed with 10 µl lysis buffer. Each single RNA specimen for transcriptomic analysis was obtained by combining 10 cell microdissected samples, followed by RNA extraction using the Pico Pure RNA Isolation Kit (Arcturus). This protocol improves the intrinsic autofluorescence of human beta cells, thus facilitating their rapid and accurate recognition and collection. Further improvement of this procedure could enable the dissection of phenotypically different beta cells, with possible implications for better understanding the changes associated with type 2 diabetes.


Subject(s)
Islets of Langerhans/cytology , Laser Capture Microdissection/methods , Pancreas/cytology , Humans , Islets of Langerhans/surgery , Pancreas/surgery
20.
Mol Cell Endocrinol ; 367(1-2): 1-10, 2013 Mar 10.
Article in English | MEDLINE | ID: mdl-23246353

ABSTRACT

To shed light on islet cell molecular phenotype in human type 2 diabetes (T2D), we studied the transcriptome of non-diabetic (ND) and T2D islets to then focus on the ubiquitin-proteasome system (UPS), the major protein degradation pathway. We assessed gene expression, amount of ubiquitinated proteins, proteasome activity, and the effects of proteasome inhibition and prolonged exposure to palmitate. Microarray analysis identified more than one thousand genes differently expressed in T2D islets, involved in many structures and functions, with consistent alterations of the UPS. Quantitative RT-PCR demonstrated downregulation of selected UPS genes in T2D islets and beta cell fractions, with greater ubiquitin accumulation and reduced proteasome activity. Chemically induced reduction of proteasome activity was associated with lower glucose-stimulated insulin secretion, which was partly reproduced by palmitate exposure. These results show the presence of many changes in islet transcriptome in T2D islets and underline the importance of the association between UPS alterations and beta cell dysfunction in human T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Oligonucleotide Array Sequence Analysis , Proteasome Endopeptidase Complex/metabolism , Transcriptome/genetics , Ubiquitin/metabolism , Aged , Animals , Cell Line , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , Immunohistochemistry , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Middle Aged , Palmitates/pharmacology , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Rats , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitin/genetics , Ubiquitinated Proteins/genetics , Ubiquitinated Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...