Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Eur Heart J ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842545

ABSTRACT

BACKGROUND AND AIMS: The spleen serves as an important relay organ that releases cardioprotective factor(s) upon vagal activation during remote ischaemic conditioning (RIC) in rats and pigs. The translation of these findings to humans was attempted. METHODS: Remote ischaemic conditioning or electrical auricular tragus stimulation (ATS) were performed in 10 healthy young volunteers, 10 volunteers with splenectomy, and 20 matched controls. Venous blood samples were taken before and after RIC/ATS or placebo, and a plasma dialysate was infused into isolated perfused rat hearts subjected to global ischaemia/reperfusion. RESULTS: Neither left nor right RIC or ATS altered heart rate and heart rate variability in the study cohorts. With the plasma dialysate prepared before RIC or ATS, respectively, infarct size (% ventricular mass) in the recipient rat heart was 36 ± 6% (left RIC), 34 ± 3% (right RIC) or 31 ± 5% (left ATS), 35 ± 5% (right ATS), and decreased with the plasma dialysate from healthy volunteers after RIC or ATS to 20 ± 4% (left RIC), 23 ± 6% (right RIC) or to 19 ± 4% (left ATS), 26 ± 9% (right ATS); infarct size was still reduced with plasma dialysate 4 days after ATS and 9 days after RIC. In a subgroup of six healthy volunteers, such infarct size reduction was abrogated by intravenous atropine. Infarct size reduction by RIC or ATS was also abrogated in 10 volunteers with splenectomy, but not in their 20 matched controls. CONCLUSIONS: In humans, vagal innervation and the spleen as a relay organ are decisive for the cardioprotective signal transduction of RIC and ATS.

2.
Am J Physiol Heart Circ Physiol ; 327(1): H70-H79, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38700468

ABSTRACT

Activation of the vagus nerve mediates cardioprotection and attenuates myocardial ischemia/reperfusion (I/R) injury. In response to vagal activation, acetylcholine (ACh) is released from the intracardiac nervous system (ICNS) and activates intracellular cardioprotective signaling cascades. Recently, however, a nonneuronal cholinergic cardiac system (NNCCS) in cardiomyocytes has been described as an additional source of ACh. To investigate whether the NNCCS mediates cardioprotection in the absence of vagal and ICNS activation, we used a reductionist approach of isolated adult rat ventricular cardiomyocytes without neuronal cells, using hypoxic preconditioning (HPC) as a protective stimulus. Adult rat ventricular cardiomyocytes were isolated, the absence of neuronal cells was confirmed, and HPC was induced by 10/20 min hypoxia/reoxygenation (H/R) before subjection to 30/5 min H/R to simulate I/R injury. Cardiomyocyte viability was assessed by trypan blue staining at baseline and after HPC+H/R or H/R. Intra- and extracellular ACh was quantified using liquid chromatography-coupled mass spectrometry at baseline, after HPC, after hypoxia, and after reoxygenation, respectively. In a subset of experiments, muscarinic and nicotinic ACh receptor (m- and nAChR) antagonists were added during HPC or during H/R. Cardiomyocyte viability at baseline (69 ± 4%) was reduced by H/R (10 ± 3%). With HPC, cardiomyocyte viability was preserved after H/R (25 ± 6%). Intra- and extracellular ACh increased during hypoxia; HPC further increased both intra- and extracellular ACh (from 0.9 ± 0.7 to 1.5 ± 1.0 nmol/mg; from 0.7 ± 0.6 to 1.1 ± 0.7 nmol/mg, respectively). The addition of mAChR and nAChR antagonists during HPC had no impact on HPC's protection; however, protection was abrogated when antagonists were added during H/R (cardiomyocyte viability after H/R: 23 ± 5%; 13 ± 4%). In conclusion, activation of the NNCCS is involved in cardiomyocyte protection; HPC increases intra- and extracellular ACh during H/R, and m- and nAChRs are causally involved in HPC's cardiomyocyte protection during H/R. The interplay between upstream ICNS activation and NNCCS activation in myocardial cholinergic metabolism and cardioprotection needs to be investigated in future studies.NEW & NOTEWORTHY The intracardiac nervous system is considered to be involved in ischemic conditioning's cardioprotection through the release of acetylcholine (ACh). However, we demonstrate that hypoxic preconditioning (HPC) protects from hypoxia/reoxygenation injury and increases intra- and extracellular ACh during hypoxia in isolated adult ventricular rat cardiomyocytes. HPC's protection involves cardiomyocyte muscarinic and nicotinic ACh receptor activation. Thus, besides the intracardiac nervous system, a nonneuronal cholinergic cardiac system may also be causally involved in cardiomyocyte protection by ischemic conditioning.


Subject(s)
Acetylcholine , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Acetylcholine/pharmacology , Acetylcholine/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/physiopathology , Myocardial Reperfusion Injury/pathology , Male , Cell Hypoxia , Rats , Non-Neuronal Cholinergic System , Ischemic Preconditioning, Myocardial , Rats, Sprague-Dawley , Cell Survival , Receptors, Muscarinic/metabolism , Cells, Cultured , Muscarinic Antagonists/pharmacology
3.
Am J Physiol Heart Circ Physiol ; 326(2): H408-H417, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38133620

ABSTRACT

Metabolic syndrome predisposes and contributes to the development and progression of atherosclerosis. The minipig strain "Ossabaw" is characterized by a predisposition to develop metabolic syndrome. We compared vasomotor function in Ossabaw minipigs before they developed their diseased phenotype to that of Göttingen minipigs without such genetic predisposition. Mesenteric arteries of adult Ossabaw and Göttingen minipigs were dissected postmortem and mounted on a myograph for isometric force measurements. Maximal vasoconstriction to potassium chloride (KClmax) was induced. Cumulative concentration-response curves were determined in response to norepinephrine. Endothelium-dependent (with carbachol) and endothelium-independent (with nitroprusside) vasodilation were analyzed after preconstriction by norepinephrine. In a bioinformatic analysis, variants/altered base pairs within genes associated with cardiovascular disease were analyzed. KClmax was similar between the minipig strains (15.6 ± 6.7 vs. 14.1 ± 3.4 ΔmN). Vasoconstriction in response to norepinephrine was more pronounced in Ossabaw than in Göttingen minipigs (increase of force to 143 ± 48 vs. 108 ± 38% of KClmax). Endothelium-dependent and endothelium-independent vasodilation were less pronounced in Ossabaw than in Göttingen minipigs (decrease of force to 46.4 ± 29.6 vs. 16.0 ± 18.4% and to 36.7 ± 25.2 vs. 2.3 ± 3.7% of norepinephrine-induced preconstriction). Vasomotor function was not different between the sexes. More altered base pairs/variants were identified in Ossabaw than in Göttingen minipigs for the exon encoding adrenoceptor-α1A. Vasomotor function in lean Ossabaw minipigs is shifted toward vasoconstriction and away from vasodilation in comparison with Göttingen minipigs, suggesting a genetic predisposition for vascular dysfunction and atherosclerosis in Ossabaw minipigs. Thus, Ossabaw minipigs may be a better model for human cardiovascular disease than Göttingen minipigs.NEW & NOTEWORTHY Animal models with a predisposition to metabolic syndrome and atherosclerosis are attracting growing interest for translational research, as they may better mimic the variability of patients with cardiovascular disease. In Ossabaw minipigs, with a polygenic predisposition to metabolic syndrome, but without the diseased phenotype, vasoconstriction is more and vasodilation is less pronounced in mesenteric arteries than in Göttingen minipigs. Ossabaw minipigs may be a more suitable model of human cardiovascular disease.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Metabolic Syndrome , Swine , Animals , Humans , Swine, Miniature/genetics , Metabolic Syndrome/genetics , Mesenteric Arteries , Genetic Predisposition to Disease , Norepinephrine/pharmacology
4.
Basic Res Cardiol ; 118(1): 23, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37289247

ABSTRACT

Whereas prior experiments in juvenile pigs had reported infarct size reduction by intravenous metoprolol early during myocardial ischaemia, two major clinical trials in patients with reperfused acute myocardial infarction were equivocal. We, therefore, went back and tested the translational robustness of infarct size reduction by metoprolol in minipigs. Using a power analysis-based prospective design, we pretreated 20 anaesthetised adult Göttingen minipigs with 1 mg kg-1 metoprolol or placebo and subjected them to 60-min coronary occlusion and 180-min reperfusion. Primary endpoint was infarct size (triphenyl tetrazolium chloride staining) as a fraction of area at risk; no-reflow area (thioflavin-S staining) was a secondary endpoint. There was no significant reduction in infarct size (46 ± 8% of area at risk with metoprolol vs. 42 ± 8% with placebo) or area of no-reflow (19 ± 21% of infarct size with metoprolol vs. 15 ± 23% with placebo). However, the inverse relationship between infarct size and ischaemic regional myocardial blood flow was modestly, but significantly shifted downwards with metoprolol, whereas ischaemic blood flow tended to be reduced by metoprolol. With an additional dose of 1 mg kg-1 metoprolol after 30-min ischaemia in 4 additional pigs, infarct size was also not reduced (54 ± 9% vs. 46 ± 8% in 3 contemporary placebo, n.s.), and area of no-reflow tended to be increased (59 ± 20% vs. 29 ± 12%, n.s.).Infarct size reduction by metoprolol in pigs is not robust, and this result reflects the equivocal clinical trials. The lack of infarct size reduction may be the result of opposite effects of reduced infarct size at any given blood flow and reduced blood flow, possibly through unopposed alpha-adrenergic coronary vasoconstriction.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Animals , Metoprolol/pharmacology , Myocardial Ischemia/drug therapy , Myocardium , Swine , Swine, Miniature
5.
Am J Physiol Heart Circ Physiol ; 325(1): H125-H135, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37235522

ABSTRACT

Mitochondrial function is critical to myocardial ischemia-reperfusion injury and cardioprotection. The measurement of mitochondrial function in isolated mitochondria requires cardiac specimens of about 300 mg and is therefore only possible at the end of an animal experiment or during cardiosurgical interventions in humans. As an alternative, mitochondrial function can be measured in permeabilized myocardial tissue (PMT) specimens of about 2-5 mg, which are retrieved by sequential biopsies in animal experiments and during cardiac catheterization in humans. We attempted to validate measurements of mitochondrial respiration from PMT by comparison with those from isolated mitochondria of left ventricular myocardium from anesthetized pigs undergoing 60 min coronary occlusion and 180 min reperfusion. Mitochondrial respiration was normalized to the content of mitochondrial marker proteins [cytochrome-c oxidase 4 (COX4), citrate synthase, and manganese-dependent superoxide dismutase]. When normalized to COX4, mitochondrial respiration measurements in PMT and isolated mitochondria agreed well in Bland-Altman plots (bias score, -0.03 nmol/min/COX4; 95% confidence interval: 6.31 nmol/min/COX4 and -6.37 nmol/min/COX4) and correlated well (slope of 0.77 and Pearson's R of 0.87). Mitochondrial dysfunction by ischemia-reperfusion was equally reflected in PMT and isolated mitochondria (44 and 48% reduction of ADP-stimulated complex I respiration). Also in isolated human right atrial trabeculae, simulation of ischemia-reperfusion injury by exposure to 60 min hypoxia and 10 min reoxygenation reduced mitochondrial ADP-stimulated complex I respiration by 37% in PMT. In conclusion, mitochondrial function measurements in permeabilized cardiac tissue can substitute for that in isolated mitochondria to reflect mitochondrial dysfunction following ischemia-reperfusion.NEW & NOTEWORTHY Methods to quantify mitochondrial function in translationally relevant models and in human tissue are needed to improve the translation of cardioprotection to patients. Our present approach, using PMT instead of isolated mitochondria for the quantification of mitochondrial ischemia-reperfusion damage, provides a reference for further studies in translationally relevant large animal models and in human tissue, thus possibly improving the translation of cardioprotection to the benefit of patients with acute myocardial infarction.


Subject(s)
Atrial Fibrillation , Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Animals , Swine , Atrial Fibrillation/metabolism , Mitochondria, Heart/metabolism , Heart Atria/metabolism , Myocardial Reperfusion Injury/metabolism , Respiration , Reperfusion
6.
Front Cardiovasc Med ; 10: 1173462, 2023.
Article in English | MEDLINE | ID: mdl-37153458

ABSTRACT

Introduction: Diazoxide is a powerful cardioprotective agent that activates mitochondrial ATP-dependent K-channels and stimulates mitochondrial respiration. Diazoxide reduced infarct size in isolated rodent heart preparations and upon pretreatment in juvenile pigs with coronary occlusion/reperfusion. We aimed to study the use of diazoxide in a more realistic adult pig model of reperfused acute myocardial infarction when diazoxide was administered just before reperfusion. Methods and results: In a first approach, we pretreated anaesthetised adult Göttingen minipigs with 7 mg kg-1 diazoxide (n = 5) or placebo (n = 5) intravenously over 10 min and subjected them to 60 min coronary occlusion and 180 min reperfusion; blood pressure was maintained by use of an aortic snare. The primary endpoint was infarct size (triphenyl tetrazolium chloride staining) as a fraction of area at risk; no-reflow area (thioflavin-S staining) was the secondary endpoint. In a second approach, diazoxide (n = 5) was given from 50 to 60 min coronary occlusion, and blood pressure was not maintained. There was a significant reduction in infarct size (22% ± 11% of area at risk with diazoxide pretreatment vs. 47% ± 11% with placebo) and area of no-reflow (14% ± 14% of infarct size with diazoxide pretreatment vs. 46% ± 20% with placebo). With diazoxide from 50 to 60 min coronary occlusion, however, there was marked hypotension, and infarct size (44% ± 7%) and area of no-reflow were not reduced (35% ± 25%). Conclusions: Cardioprotection by diazoxide pretreatment was confirmed in adult pigs with reperfused acute myocardial infarction but is not feasible when diazoxide is administered in a more realistic scenario before reperfusion and causes hypotension.

7.
Int J Cardiol ; 386: 109-117, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37207797

ABSTRACT

BACKGROUND: Ischemic preconditioning (IPC; brief cycles of coronary occlusion/ reperfusion) reduces myocardial infarct size. The ST-segment elevation during coronary occlusion is progressively attenuated with increasing number of IPC cycles. Progressive attenuation of ST-segment elevation is considered a result of sarcolemmal KATP channel activation and has been considered to reflect and predict IPC's cardioprotection. We have recently demonstrated that IPC failed to reduce infarct size in minipigs of a particular strain (Ossabaw), which had a genetic predisposition to develop, but not yet established a metabolic syndrome. To determine whether or not Ossabaw minipigs nevertheless had attenuated ST-segment elevation over repetitive IPC cycles, we compared Göttingen vs. Ossabaw minipigs in which IPC reduces infarct size. METHODS AND RESULTS: We analyzed surface chest electrocardiographic (ECG) recordings of anesthetized open-chest contemporary Göttingen (n = 43) and Ossabaw minipigs (n = 53). Both minipig strains were subjected to 60 min coronary occlusion and 180 min reperfusion without or with IPC (3 × 5 min/ 10 min coronary occlusion/ reperfusion). ST-segment elevations during the repetitive coronary occlusions were analyzed. In both minipig strains, IPC attenuated ST-segment elevation with increasing number of coronary occlusions. IPC reduced infarct size in Göttingen minipigs (45 ± 10% without vs. 25 ± 13% of area at risk with IPC), whereas such cardioprotection was absent in Ossabaw minipigs (54 ± 11% vs. 50 ± 11%). CONCLUSION: Apparently, the block of signal transduction of IPC in Ossabaw minipigs occurs distal to the sarcolemma, where KATP channel activation still attenuates ST-segment elevation as it does in Göttingen minipigs.


Subject(s)
Coronary Occlusion , Ischemic Preconditioning, Myocardial , Myocardial Infarction , Swine , Animals , Humans , Swine, Miniature , Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/prevention & control , Arrhythmias, Cardiac , Adenosine Triphosphate
8.
Cardiovasc Res ; 119(2): 561-570, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35426434

ABSTRACT

AIMS: Female sex has been proposed to be cardioprotective per se. Studies with myocardial ischaemia/reperfusion and infarct size as endpoint have demonstrated cardioprotection in female, castrated male, and male pigs. These studies are difficult to compare, given the different pig strains, models, durations of ischaemia, and methods of infarct size quantification. The few studies using both female and male pigs reported no differences in infarct size and cardioprotection. We, therefore, prospectively compared infarct size in Göttingen minipigs undergoing ischaemia/reperfusion (I/R) without and with ischaemic pre-conditioning (IPC) between female, castrated male, and male pigs. METHODS AND RESULTS: In a prospective, randomized approach, 28 Göttingen open-chest, anaesthetized minipigs underwent 60 min ischaemia by distal left anterior descending artery (LAD) occlusion and 180 min reperfusion without and with IPC by three cycles of 5 min LAD occlusion/10 min reperfusion. Infarct size with I/R was not different between female, castrated male, and male pigs (45 ± 8 vs. 45 ± 13 vs. 41 ± 9% area at risk), as was the reduction in infarct size with IPC (25 ± 11 vs. 30 ± 8 vs. 19 ± 10% area at risk). In addition, the area of no-reflow was not different between female, castrated male, and male pigs with I/R (57 ± 13 vs. 35 ± 7 vs. 47 ± 26% infarct size) or IPC (4 ± 10 vs.12 ± 20 vs. 0 ± 0% infarct size). Phosphorylation of signal transducer and activator of transcription 3 was increased at 10 min reperfusion by IPC but not by I/R to the same extent in female, castrated male, and male pigs (198 ± 30 vs. 230 ± 165 vs. 179 ± 107% of baseline). CONCLUSION: Our data do not support the notion of sex- or castration-related differences in infarct size, coronary microvascular injury, and cardioprotection by IPC. TRANSLATIONAL PERSPECTIVE: The translation of successful preclinical studies on cardioprotection to the benefit of patients with reperfused myocardial infarction has been difficult. The difficulties have been attributed to confounders such as co-morbidities and co-medications which patients typically have but animals don´t, but also to age and sex. Notably, female sex has been considered as protective per se. We have now, using our established and clinically relevant pig model of reperfused acute myocardial infarction and ischaemic preconditioning as the most robust cardioprotective intervention looked for sex-related differences of infarct size, no-reflow and cardioprotection by ischaemic preconditioning in a prospectively powered approach but found none such difference.


Subject(s)
Ischemic Preconditioning, Myocardial , Myocardial Infarction , Myocardial Ischemia , Swine , Animals , Male , Female , Swine, Miniature , Prospective Studies , Myocardial Infarction/prevention & control , Myocardium
9.
Cardiovasc Drugs Ther ; 37(5): 865-876, 2023 10.
Article in English | MEDLINE | ID: mdl-35595877

ABSTRACT

PURPOSE: The role of platelets during myocardial ischemia/reperfusion (I/R) is ambivalent. They contribute to injury but also to cardioprotection. Repeated blood flow restriction and reperfusion in a tissue/organ remote from the heart (remote ischemic conditioning, RIC) reduce myocardial I/R injury and attenuate platelet activation. Whether or not platelets mediate RIC's cardioprotective signal is currently unclear. METHODS AND RESULTS: Venous blood from healthy volunteers (without or with pretreatment of 500/1000 mg aspirin or 180 mg ticagrelor orally, 2-3 h before the study, n = 18 each) was collected before and after RIC (3 × 5 min blood pressure cuff inflation at 200 mmHg on the left upper arm/5 min deflation). Washed platelets were isolated. Platelet-poor plasma was used to prepare plasma-dialysates. Platelets (25 × 103/µL) or plasma-dialysates (1:10) prepared before and after RIC from untreated versus aspirin- or ticagrelor-pretreated volunteers, respectively, were infused into isolated buffer-perfused rat hearts. Hearts were subjected to global 30 min/120 min I/R. Infarct size was stained. Infarct size was less with infusion of platelets/plasma-dialysate after RIC (18 ± 7%/23 ± 9% of ventricular mass) than with platelets/plasma-dialysate before RIC (34 ± 7%/33 ± 8%). Aspirin pretreatment abrogated the transfer of RIC's cardioprotection by platelets (after/before RIC, 34 ± 7%/33 ± 7%) but only attenuated that by plasma-dialysate (after/before RIC, 26 ± 8%/32 ± 5%). Ticagrelor pretreatment induced an in vivo formation of cardioprotective factor(s) per se (platelets/plasma-dialysate before RIC, 26 ± 7%/26 ± 7%) but did not impact on RIC's cardioprotection by platelets/plasma-dialysate (20 ± 7%/21 ± 5%). CONCLUSION: Platelets serve as carriers for RIC's cardioprotective signal through an aspirin-sensitive and thus cyclooxygenase-dependent mechanism. The P2Y12 inhibitor ticagrelor per se induces a humoral cardioprotective signal.


Subject(s)
Aspirin , Ischemia , Rats , Animals , Humans , Ticagrelor/pharmacology , Aspirin/pharmacology , Infarction , Dialysis Solutions
10.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362133

ABSTRACT

Hypothyroidism has been shown to reduce infarct size in rats, but the underlying mechanisms are unclear. We used isolated pressure-constant perfused hearts of control, hypothyroid and hyperthyroid mice and measured infarct size, functional parameters and phosphorylation of key molecules in cardioprotective signaling with matched heart rate. Compared with controls, hypothyroidism was cardioprotective, while hyperthyroidism was detrimental with enlarged infarct size. Next, we asked how thyroid hormone receptor α (TRα) affects ischemia/reperfusion (IR) injury. Thus, canonical and noncanonical TRα signaling was investigated in the hearts of (i) mice lacking TRα (TRα0), (ii) with a mutation in TRα DNA-binding domain (TRαGS) and (iii) in hyperthyroid TRα0 (TRα0hyper) and TRαGS mice (TRαGShyper). TRα0 mouse hearts were protected against IR injury. Furthermore, infarct size was reduced in the hearts of TRαGS mice that lack canonical TRα signaling but maintain noncanonical TRα action. Hyperthyroidism did not increase infarct size in TRα0 and TRαGS mouse hearts. These cardioprotective effects were not associated with increased phosphorylation of key proteins of RISK, SAFE and eNOS pathways. In summary, chronic hypothyroidism and the lack of canonical TRα signaling are cardioprotective in IR injury and protection is not due to favorable changes in hemodynamics.


Subject(s)
Hyperthyroidism , Hypothyroidism , Reperfusion Injury , Rats , Mice , Animals , Hypothyroidism/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Hyperthyroidism/metabolism , Hemodynamics , Reperfusion Injury/metabolism , Infarction , Myocardium/metabolism
11.
Am J Physiol Heart Circ Physiol ; 323(6): H1365-H1375, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36367697

ABSTRACT

Ischemic preconditioning (IPC; brief cycles of coronary occlusion/reperfusion) is operative in all species tested so far and reduces infarct size through the release of trigger molecules and activation of signal transducer and activator of transcription (STAT)3 in pigs. We have recently demonstrated that IPC failed to protect Ossabaw minipigs, which had a genetic predisposition to, but not yet established a metabolic syndrome, from infarction and did not activate STAT3. We now subjected Ossabaw minipigs to remote ischemic conditioning (RIC; 4 × 5 min/5 min bilateral hindlimb ischemia-reperfusion) and analyzed the release of cardioprotective triggers into the circulation with the aim to distinguish whether IPC failed to stimulate trigger release or to activate intracellular signaling cascades upstream of STAT3. RIC or a placebo protocol, respectively, was induced in anesthetized pigs before 60 min/180 min coronary occlusion/reperfusion. Plasma, prepared from Ossabaw minipigs after RIC or placebo, was infused into isolated rat hearts subjected to 30 min/120 min global ischemia-reperfusion. In the Ossabaw minipigs, RIC did not reduce infarct size (49.5 ± 12.1 vs. 56.0 ± 11.8% of area at risk with placebo), and STAT3 was not activated. In isolated rat hearts, infusion of RIC plasma reduced infarct size (19.7 ± 6.7 vs. 33.2 ± 5.5% of ventricular mass with placebo) and activated STAT3. Pretreatment of rat hearts with the STAT3 inhibitor stattic abrogated such infarct size reduction and STAT3 activation. In conclusion, Ossabaw minipigs release cardioprotective triggers in response to RIC into the circulation, and lack of cardioprotection is attributed to myocardial nonresponsiveness.NEW & NOTEWORTHY Ischemic conditioning reduces myocardial infarct size in all species tested so far. In the present study, we used Ossabaw minipigs that had a genetic predisposition to, but not yet established a metabolic syndrome. In these pigs, remote ischemic conditioning (RIC) induced the release of cardioprotective triggers but did not reduce infarct size. Transfer of their plasma, however, reduced infarct size in isolated recipient rat hearts, along with signal transducer and activator of transcription (STAT)3 activation.


Subject(s)
Coronary Occlusion , Metabolic Syndrome , Animals , Swine , Swine, Miniature , Genetic Predisposition to Disease , Infarction , Ischemia
12.
Basic Res Cardiol ; 117(1): 58, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36374343

ABSTRACT

The translation of successful preclinical and clinical proof-of-concept studies on cardioprotection to the benefit of patients with reperfused acute myocardial infarction has been difficult so far. This difficulty has been attributed to confounders which patients with myocardial infarction typically have but experimental animals usually not have. The metabolic syndrome is a typical confounder. We hypothesised that there may also be a genuine non-responsiveness to cardioprotection and used Ossabaw minipigs which have the genetic predisposition to develop a diet-induced metabolic syndrome, but before they had developed the diseased phenotype. Using a prospective study design, a reperfused acute myocardial infarction was induced in 62 lean Ossabaw minipigs by 60 min coronary occlusion and 180 min reperfusion. Ischaemic preconditioning by 3 cycles of 5 min coronary occlusion and 10 min reperfusion was used as cardioprotective intervention. Ossabaw minipigs were stratified for their single nucleotide polymorphism as homozygous for valine (V/V) or isoleucine (I/I)) in the γ-subunit of adenosine monophosphate-activated protein kinase. Endpoints were infarct size and area of no-reflow. Infarct size (V/V: 54 ± 8, I/I: 54 ± 13% of area at risk, respectively) was not reduced by ischaemic preconditioning (V/V: 55 ± 11, I/I: 46 ± 11%) nor was the area of no-reflow (V/V: 57 ± 18, I/I: 49 ± 21 vs. V/V: 57 ± 21, I/I: 47 ± 21% of infarct size). Bioinformatic comparison of the Ossabaw genome to that of Sus scrofa and Göttingen minipigs identified differences in clusters of genes encoding mitochondrial and inflammatory proteins, including the janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. The phosphorylation of STAT3 at early reperfusion was not increased by ischaemic preconditioning, different from the established STAT3 activation by cardioprotective interventions in other pig strains. Ossabaw pigs have not only the genetic predisposition to develop a metabolic syndrome but also are not amenable to cardioprotection by ischaemic preconditioning.

13.
J Cardiovasc Pharmacol Ther ; 27: 10742484221097273, 2022.
Article in English | MEDLINE | ID: mdl-35510644

ABSTRACT

Remote ischemic conditioning (RIC) induces the release of circulating cardioprotective factors and attenuates myocardial ischemia/reperfusion injury. Evidence for such humoral cardioprotective factor(s) is derived from transfer with plasma (derivatives) from one individual undergoing RIC to another individual's heart, even across species. With transfer into an isolated perfused heart, only a single plasma (derivative) sample can be studied with infarct size as endpoint, and therefore the comparison of samples before and after RIC or between RIC and placebo is hampered by the inter-individual variation of infarct sizes in isolated perfused hearts. We therefore developed a preparation of cardiomyocytes from a single mouse heart, where aliquots of the same heart can undergo hypoxia/reoxygenation (H/R) with exposure to buffer, RIC, or placebo samples without or with pharmacological blockade. To validate this approach, we used plasma dialysates taken before and after RIC from patients undergoing coronary bypass grafting who had experienced protection by RIC (troponin release ↓ by 28% vs placebo). The cardiomyocyte bioassay had little variation after H/R with buffer (mean ± standard deviation; 7% ± 2% viable cells) and demonstrated preserved viability after RIC (15% ± 5% vs 6% ± 3% before). For comparison, infarct size in isolated mouse hearts after global ischemia and reperfusion was 22% ± 14% of left ventricular mass after versus 42% ± 14% before RIC. Stattic, an inhibitor of signal transducer and activator of transcription (STAT)3 protein, abrogated protection in the cardiomyocytes. We have thus established a cardiomyocyte bioassay to analyze RIC's protection which minimizes inter-individual variation and the use of animals.


Subject(s)
Coronary Artery Bypass , Ischemic Preconditioning, Myocardial , Animals , Biological Assay , Coronary Artery Bypass/adverse effects , Humans , Infarction , Ischemia , Mice , Myocytes, Cardiac
14.
Basic Res Cardiol ; 116(1): 27, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33876304

ABSTRACT

Ischemic post-conditioning (iPoCo) by coronary re-occlusion/reperfusion during immediate reperfusion after prolonged myocardial ischemia reduces infarct size. Mechanical manipulation of culprit lesions, however, carries the risk of coronary microembolization which may obscure iPoCo's cardioprotection. Pharmacological post-conditioning with exogenous triiodothyronine (T3) could serve as an alternative conditioning strategy. Similar to iPoCo, T3 may activate cardioprotective prosurvival pathways. We aimed to study T3's impact on infarct size and its underlying signal transduction. Hearts were isolated from male Lewis rats (200-380 g), buffer-perfused and subjected to 30 min/120 min global zero-flow ischemia/reperfusion (I/R). In additional hearts, either iPoCo (2 × 30 s/30 s I/R) was performed or T3 (100-500 µg/L) infused at reperfusion. Infarct size was demarcated with triphenyl tetrazolium chloride staining and calculated as percent of ventricular mass. Infarct size was reduced with iPoCo to 16 ± 7% vs. 36 ± 4% with I/R only. The maximum infarct size reduction was observed with 300 µg/L T3 (14 ± 2%). T3 increased the phosphorylation of protein kinase B and mitogen extracellular-regulated-kinase 1/2, both key enzymes of the reperfusion injury salvage kinase (RISK) pathway. Pharmacological RISK blockade (RISK-BL) during reperfusion abrogated T3's cardioprotection (35 ± 10%). Adult ventricular cardiomyocytes were isolated from buffer-perfused rat hearts and exposed to 30 min/5 min hypoxia/reoxygenation (H/R); reoxygenation was initiated without or with T3, respectively, and without or with RISK-BL, respectively. Maximal preservation of viability was observed with 500 µg/L T3 after H/R (27 ± 4% of all cells vs. 5 ± 3% in time-matched controls). Again, RISK-BL abrogated protection (11 ± 3%). Mitochondria were isolated at early reperfusion from buffer-perfused rat hearts without or with iPoCo or 300 µg/L T3, respectively, at reperfusion. T3 improved mitochondrial function (i.e.: increased respiration, adenosine triphosphate production, calcium retention capacity, and decreased reactive oxygen species formation) to a similar extent as iPoCo. T3 at reperfusion reduces infarct size by activation of the RISK pathway. T3's protection is a cardiomyocyte phenomenon and targets mitochondria.


Subject(s)
Mitochondria, Heart/drug effects , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Triiodothyronine/pharmacology , Animals , Cell Hypoxia , Disease Models, Animal , Isolated Heart Preparation , Male , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt , Rats, Inbred Lew , Signal Transduction , Ventricular Function, Left/drug effects
15.
Pflugers Arch ; 471(11-12): 1371-1379, 2019 12.
Article in English | MEDLINE | ID: mdl-31631252

ABSTRACT

Short cycles of ischemia/reperfusion in a tissue/organ remote from the heart reduce myocardial ischemia/reperfusion injury. Such remote ischemic conditioning (RIC) can be induced before (pre-), during (per-), or after (post-) the onset of myocardial ischemia. RIC's protection can be transferred with plasma between different individuals, even across species. Infusion of plasma from pigs with remote ischemic per-conditioning(RPERC) reduces infarct size in isolated perfused rat hearts when given before and after the index ischemia. We here determined whether or not infusion of pig plasma is equally protective when given exclusively before or after the index ischemia in isolated perfused rat hearts. Blood was sampled at 10 min reperfusion from Göttingen mini-pigs with 60/180 min coronary occlusion/reperfusion without (placebo, n = 8) or with RPERC (4 × 5 min/5 min hindlimb ischemia/reperfusion, n = 7) starting at 20 min coronary occlusion. Plasma was separated, diluted (1:6), and infused into isolated perfused rat hearts before (plasmabefore) or after (plasmaafter) 30/120 min global zero-flow ischemia/reperfusion. Infarct size (IS) was demarcated and calculated as percent of ventricular mass (means ± standard deviations). The activation of cardioprotective intracellular signaling cascades was analyzed by Western blot. RPERC-plasma reduced IS (placebo-plasmabefore 36 ± 5% and placebo-plasmaafter 36 ± 7% versus RPERC-plasmabefore 19 ± 3% and RPERC-plasmaafter 21 ± 4%; P < 0.001 versus placebo-plasma) and increased the phosphorylation of signal transducer and activator of transcription 3, no matter whether plasma was given before ischemia or during reperfusion. Obviously, the protection, which the released factors exert, is operative during reperfusion. However, pre-ischemic exposure to such cardioprotective factors is remembered throughout ischemia.


Subject(s)
Heart/physiopathology , Infarction/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Animals , Ischemic Preconditioning, Myocardial/methods , Male , Phosphorylation/physiology , Rats , Signal Transduction/physiology , Swine , Swine, Miniature
16.
Physiol Rep ; 7(12): e14146, 2019 07.
Article in English | MEDLINE | ID: mdl-31210033

ABSTRACT

We determined the impact of sex on the magnitude of cardioprotection by local and remote ischemic preconditioning (IPC and RIPC) and of ischemic/reperfused peripheral tissue mass on protection by RIPC. Hearts of female and male Lewis rats were excised, perfused with buffer, and underwent either IPC by 3 × 5/5 min global zero-flow ischemia/reperfusion (GI/R) or time-matched perfusion (TP) before 30/120 min GI/R. In a second approach, anesthetized female and male Lewis rats underwent RIPC, 3 × 5/5 min ischemia/reperfusion of one or both hindlimbs (1-RIPC or 2-RIPC), or placebo. Thirty minutes after the RIPC/placebo protocol, hearts were excised and subjected to GI/R. In female and male hearts, infarct size was less with IPC than with TP before GI/R (IPC+GI/Rfemale : 12 ± 5%; IPC+GI/Rmale : 12 ± 7% vs. TP+GI/Rfemale : 33 ± 5%; TP+GI/Rmale : 37 ± 7%, P < 0.001). With 2-RIPC, infarct size was less than with 1-RIPC in female and male rat hearts, respectively (2-RIPC+GI/Rfemale : 15 ± 5% vs. 1-RIPC+GI/Rfemale : 22 ± 7%, P = 0.026 and 2-RIPC+GI/Rmale : 16 ± 5% vs. 1-RIPC+GI/Rmale : 22 ± 8%, P = 0.016). Infarct size after the placebo protocol and GI/R was not different between female and male hearts (36 ± 8% vs. 34 ± 5%). Sex is no determinant of IPC- and RIPC-induced cardioprotection in isolated Lewis rat hearts. RIPC-induced cardioprotection is greater with greater mass of ischemic/reperfused peripheral tissue.


Subject(s)
Ischemic Preconditioning, Myocardial/methods , Myocardial Reperfusion Injury/prevention & control , Animals , Body Weight/physiology , Coronary Circulation/physiology , Female , Male , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Rats, Inbred Lew , Sex Factors , Ventricular Pressure/physiology
17.
Circ Res ; 123(10): 1152-1163, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30359199

ABSTRACT

RATIONALE: The signal transduction of remote ischemic conditioning is still largely unknown. OBJECTIVE: Characterization of neurohumoral signal transfer and vago-splenic axis in remote ischemic preconditioning (RIPC). METHODS AND RESULTS: Anesthetized pigs were subjected to 60 minutes of coronary occlusion and 180 minutes of reperfusion (placebo+ischemia/reperfusion [PLA+I/R]). RIPC was induced by 4×5/5 minutes of hindlimb I/R 90 minutes before coronary occlusion (RIPC+I/R). Arterial blood samples were taken after placebo or RIPC before I/R. In subgroups of pigs, bilateral cervical vagotomy, splenectomy, or splenic denervation were performed before PLA+I/R or RIPC+I/R, respectively. In pigs with RIPC+I/R, infarct size (percentage of area at risk) was less than in those with PLA+I/R (23±12% versus 45±8%); splenectomy or splenic denervation abrogated (splenectomy+RIPC+I/R: 38±15%; splenic denervation+RIPC+I/R: 43±5%), and vagotomy attenuated (vagotomy+RIPC+I/R: 36±11%) RIPC protection. RIPC increased phosphorylation of STAT3 (signal transducer and activator of transcription 3) in left ventricular biopsies taken at early reperfusion. Splenectomy or splenic denervation, but not vagotomy, abolished this increased phosphorylation. In rats with vagotomy, splenectomy, or splenic denervation, RIPC (3×5/5 minutes of hindlimb occlusion/reperfusion) or placebo was performed, respectively. Hearts were isolated, saline perfused, and subjected to 30/120-minute global I/R. With RIPC, infarct size (percentage of ventricular mass) was less (20±7%) than with placebo (37±6%), and vagotomy, splenectomy, or splenic denervation abrogated RIPC protection (38±12%, 36±9%, and 36±7%), respectively. Rat spleens were isolated, saline perfused, and splenic effluate (SEff) was sampled after infusion with carbachol (SEffcarbachol) or saline (SEffsaline). Pig plasma or SEff was infused into isolated perfused rat hearts subjected to global I/R. Infarct size was less with infusion of RIPC+I/Rplasma+ (24±6%) than with PLA+I/Rplasma (40±8%), vagotomy+PLA+I/Rplasma (39±11%), splenectomy+PLA+I/Rplasma (35±8%), vagotomy+RIPC+I/Rplasma (40±9%), splenectomy+RIPC+I/Rplasma (33±9%), or splenic denervation+RIPC+I/Rplasma (39±8%), respectively. With infusion of SEffcarbachol, infarct size was less than with infusion of SEffsaline (24 [19-27]% versus 35 [32-38]%). CONCLUSIONS: Activation of a vago-splenic axis is causally involved in RIPC cardioprotection.


Subject(s)
Coronary Occlusion/therapy , Ischemic Preconditioning/methods , Signal Transduction , Spleen/innervation , Splenectomy/methods , Vagotomy/methods , Animals , Male , Rats , Rats, Inbred Lew , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Spleen/metabolism , Spleen/surgery , Swine , Swine, Miniature
18.
Am J Physiol Heart Circ Physiol ; 315(1): H159-H172, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29569956

ABSTRACT

Remote ischemic perconditioning (RPER) during ongoing myocardial ischemia reduces infarct size. The signal transduction of RPER's cardioprotection is still largely unknown. Anesthetized pigs were therefore subjected to RPER by 4 × 5 min/5 min of hindlimb ischemia-reperfusion during 60 min of coronary occlusion before 3 h of reperfusion. Pigs without RPER served as placebo (PLA). The phosphorylation of Akt and ERK [reperfusion injury salvage kinase (RISK) pathway] and STAT3 [survivor activating factor enhancement (SAFE) pathway] in the area at risk was determined by Western blot analysis. Wortmannin/U0126 or AG490 was used for pharmacological RISK or SAFE blockade, respectively. Pig plasma/plasma dialysate sampled after RPER or PLA, respectively, was transferred to isolated rat and mouse hearts subjected to 30 min/120 min of global ischemia-reperfusion. Mitochondria were isolated from rat hearts at early reperfusion. Isolated mouse cardiomyocytes were subjected to 1 h of hypoxia/5 min of reoxygenation without and with prior plasma dialysate incubation. RPER reduced infarct size in pigs to 21 ± 15% versus 44 ± 9% in PLA (percentage of the area at risk, mean ± SD, P < 0.05) and increased STAT3 phosphorylation at early reperfusion. AG490 but not RISK blockade abolished the protection. RPER plasma/plasma dialysate reduced infarct size in rat (22 ± 3% of ventricular mass vs. 40 ± 11% with PLA plasma, P < 0.05) and mouse (29 ± 4% vs. 63 ± 8% with PLA plasma dialysate, P < 0.05) hearts and improved mitochondrial function (e.g., increased respiration, ATP formation, and calcium retention capacity and decreased reactive oxygen species formation). RPER dialysate also improved the viability of mouse cardiomyocytes after hypoxia/reoxygenation. RISK or SAFE blockade each abrogated these beneficial effects. NEW & NOTEWORTHY Remote ischemic perconditioning salvages the myocardium in patients with acute infarction. We identified a signal transduction with humoral transfer and STAT3 activation in pigs and an involvement of reperfusion injury salvage kinases and STAT3 in rat and mouse hearts, along with better cardiomyocyte viability and mitochondrial function.


Subject(s)
Ischemic Preconditioning, Myocardial/methods , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Signal Transduction , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/therapy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Inbred Lew , STAT3 Transcription Factor/metabolism , Swine , Swine, Miniature
19.
Int J Cardiol ; 254: 132-135, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29246425

ABSTRACT

Atrial fibrillation and coronary artery disease are highly prevalent diseases in an aging population. They share risk factors and are frequently associated. Beyond their mere association, they impact on each other. The positive feed-back between atrial fibrillation and acute myocardial ischemia involves sympathetic activation and may result in sudden death.


Subject(s)
Atrial Fibrillation/epidemiology , Atrial Fibrillation/physiopathology , Myocardial Ischemia/epidemiology , Myocardial Ischemia/physiopathology , Atrial Fibrillation/diagnosis , Humans , Myocardial Ischemia/diagnosis , Risk Factors , Sympathetic Nervous System/physiopathology
20.
Physiol Rep ; 4(15)2016 08.
Article in English | MEDLINE | ID: mdl-27482071

ABSTRACT

Stent implantation into aortocoronary saphenous vein grafts (SVG) releases particulate debris and soluble vasoactive mediators, for example, serotonin. We now analyzed effects of the soluble mediators released into the coronary arterial blood during stent implantation on vasomotion of isolated rat epicardial coronary artery segments and on coronary flow and left ventricular developed pressure in isolated perfused rat hearts. Coronary blood was retrieved during percutaneous SVG intervention using a distal occlusion/aspiration protection device in nine symptomatic patients with stable angina pectoris and a flow-limiting SVG stenosis. The blood was separated into particulate debris and plasma. Responses to coronary plasma were determined in isolated rat epicardial coronary arteries and in isolated, constant pressure-perfused rat hearts (±nitric oxide synthase [NOS] inhibition and ±serotonin receptor blockade, respectively). Coronary aspirate plasma taken after stent implantation induced a stronger vasoconstriction of rat epicardial coronary arteries (52 ± 8% of maximal potassium chloride induced vasoconstriction [% KClmax = 100%]) than plasma taken before stent implantation (12 ± 8% of KClmax); NOS inhibition augmented this vasoconstrictor response (to 110 ± 15% and 24 ± 9% of KClmax). Coronary aspirate plasma taken after stent implantation reduced in isolated perfused rat hearts only under NOS inhibition coronary flow by 17 ± 3% and left ventricular developed pressure by 25 ± 4%. Blockade of serotonin receptors abrogated these effects. Coronary aspirate plasma taken after stent implantation induces vasoconstriction in isolated rat epicardial coronary arteries and reduces coronary flow and left ventricular developed pressure in isolated perfused rat hearts with pharmacologically induced endothelial dysfunction.


Subject(s)
Coronary Vessels/physiopathology , Heart Ventricles/physiopathology , Saphenous Vein/transplantation , Serotonin/administration & dosage , Vasoconstriction , Animals , Biological Factors/administration & dosage , Biological Factors/blood , Coronary Artery Bypass , Humans , Male , Rats , Rats, Inbred Lew , Serotonin/blood , Stents
SELECTION OF CITATIONS
SEARCH DETAIL
...