Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Mar Drugs ; 22(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38921568

ABSTRACT

The formation of phytoene by condensing two geranylgeranyl diphosphate molecules catalyzed by phytoene synthase (PSY) is the first committed and rate-limiting step in carotenoid biosynthesis, which has been extensively investigated in bacteria, land plants and microalgae. However, this step in macroalgae remains unknown. In the present study, a gene encoding putative phytoene synthase was cloned from the economic red alga Pyropia yezoensis-a species that has long been used in food and pharmaceuticals. The conservative motifs/domains and the tertiary structure predicted using bioinformatic tools suggested that the cloned PyPSY should encode a phytoene synthase; this was empirically confirmed by pigment complementation in E. coli. This phytoene synthase was encoded by a single copy gene, whose expression was presumably regulated by many factors. The phylogenetic relationship of PSYs from different organisms suggested that red algae are probably the progeny of primary endosymbiosis and plastid donors of secondary endosymbiosis.


Subject(s)
Geranylgeranyl-Diphosphate Geranylgeranyltransferase , Phylogeny , Rhodophyta , Rhodophyta/genetics , Rhodophyta/enzymology , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/metabolism , Carotenoids/metabolism , Escherichia coli/genetics , Cloning, Molecular , Edible Seaweeds , Porphyra
2.
Orthop Nurs ; 43(3): 163-178, 2024.
Article in English | MEDLINE | ID: mdl-38861747

ABSTRACT

Despite significant advancements in surgical instruments and operation skills, short- and long-term outcomes following anterior cruciate ligament reconstruction (ACLR) remain unsatisfactory, as many patients fail to return to their pre-injury level of sports. Inadequate ACL rehabilitation is the primary cause of poor outcomes. Nurses have become a crucial element in the rehabilitation process. Although there is no consensus regarding the optimal post-operative rehabilitation protocols, restoring muscle strength and neuromuscular control are consistently the primary goals. This literature review presents nurse-assisted rehabilitation protocols aiming at improving muscle strength and neuromuscular control. The review discusses postoperative rehabilitation, including home-based and supervised rehabilitation, open and closed kinetic chain exercises, eccentric and concentric training, blood flow restriction training, and plyometric training. Each training protocol has its benefits and drawbacks, and should be used cautiously in specific stages of rehabilitation. Neuromuscular training, such as neuromuscular electrical stimulation, neuromuscular control exercises, and vibration therapy, is considered crucial in rehabilitation.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Humans , Anterior Cruciate Ligament Reconstruction/methods , Anterior Cruciate Ligament Reconstruction/rehabilitation , Muscle Strength/physiology , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/rehabilitation , Exercise Therapy/methods
3.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798489

ABSTRACT

Cellular proliferation plays a crucial role in tissue development, including the development of the Left-Right Organizer (LRO), the transient organ essential for dictating the vertebrate LR body plan. Here we investigate cell redistribution mechanisms and the dominance of specific progenitor cells in LRO formation, addressing cell lineage and cell behavior questions. Using zebrafish as a model, we mapped all LRO (Kupffer's Vesicle, KV) mitotic events, revealing an FGF-dependent, anteriorly enriched mitotic pattern. Using a KV-specific fluorescent microtubule (MT) line, we found that mitotic events align their spindle along the KV's longest axis until the rosette developmental stage, where "spinning" spindles followed by exclusion from KV occur. Daughter cells that remain are linked by cytokinetic bridges, shaping anteriorly focused MT patterns that precede apical actin recruitment. Our findings underscore the importance of spatially regulated mitotic events in establishing MT and actin pattern formation essential for LRO development.

4.
Clin Sci (Lond) ; 138(12): 711-723, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38804865

ABSTRACT

Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.


Subject(s)
Cell Differentiation , Cell Proliferation , Endothelin-1 , Muscle Development , Muscle, Skeletal , p38 Mitogen-Activated Protein Kinases , Animals , Muscle Development/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Endothelin-1/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Cell Proliferation/drug effects , Cell Line , Mice , Male , Mice, Inbred C57BL , Myoblasts/metabolism , Myoblasts/drug effects , Signal Transduction , MAP Kinase Signaling System , Muscular Atrophy/metabolism , Muscular Atrophy/pathology
5.
Sci Total Environ ; 934: 173313, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761952

ABSTRACT

Taiwan, identified as pivotal in the Asian drug trafficking chain, has been experiencing a surge in illicit drug-related issues. Wastewater-based epidemiology (WBE) has emerged as a promising approach for comprehensive evaluation of actual illicit drug usage. This study presents the first WBE investigation of illicit drug consumption in Taiwan based on the analysis of wastewater from four wastewater treatment plants (WWTPs) in the Taipei metropolitan area. Additionally, it demonstrates a high correlation between the amounts of illicit drugs seized and influent concentrations over an extended period of time. The reliability of solid-phase extraction and analysis via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was validated for 16 illicit drugs (methamphetamine, ketamine, cocaine, codeine, methadone, morphine, meperidine, fentanyl, sufentanil, para-methoxyamphetamine (PMA), para-methoxymethamphetamine (PMMA), 3,4-methylenedioxymethamphetamine (MDMA), cathinone, methcathinone, mephedrone (MEPH), and 4-methylethcathinone (4-MEC)). Methamphetamine, ketamine, and 4-MEC were consistently detected in all wastewater samples, underscoring their prevalence in the Taipei metropolitan area. Biochemical oxygen demand (BOD) and ammonia nitrogen (ammonia N) were employed to reduce uncertainty in estimations of population size during back-calculation of illicit drug consumption. The results indicate that methamphetamine was the most consumed drug (175-740 mg day-1 1000 people-1), followed by ketamine (22-280 mg day-1 1000 people-1). In addition, urban-related WWTPs exhibited higher consumption of methamphetamine and ketamine than did the suburban-related WWTP, indicating distinct illicit drug usage patterns between suburban and urban regions. Moreover, an examination of temporal trends in wastewater from the Dihua WWTP revealed a persistent predominance of ketamine and methamphetamine, consistent with statistical data pertaining to seizure quantities and urine test results. The study provides encouraging insight into spatial and temporal variations in illicit drug usage in the Taipei metropolitan area, emphasizing the complementary role of WBE in understanding trends in illicit drug abuse.


Subject(s)
Illicit Drugs , Wastewater , Water Pollutants, Chemical , Taiwan/epidemiology , Wastewater/chemistry , Illicit Drugs/analysis , Water Pollutants, Chemical/analysis , Substance Abuse Detection/methods , Humans , Environmental Monitoring , Tandem Mass Spectrometry , Cities
6.
bioRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496556

ABSTRACT

Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE: Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk.

7.
Int J Nurs Stud ; 153: 104717, 2024 May.
Article in English | MEDLINE | ID: mdl-38401366

ABSTRACT

BACKGROUND: Investigates the integration of an artificial intelligence tool, specifically ChatGPT, in nursing education, addressing its effectiveness in exam preparation and self-assessment. OBJECTIVE: This study aims to evaluate the performance of ChatGPT, one of the most promising artificial intelligence-driven linguistic understanding tools in answering question banks for nursing licensing examination preparation. It further analyzes question characteristics that might impact the accuracy of ChatGPT-generated answers and examines its reliability through human expert reviews. DESIGN: Cross-sectional survey comparing ChatGPT-generated answers and their explanations. SETTING: 400 questions from Taiwan's 2022 Nursing Licensing Exam. METHODS: The study analyzed 400 questions from five distinct subjects of Taiwan's 2022 Nursing Licensing Exam using the ChatGPT model which provided answers and in-depth explanations for each question. The impact of various question characteristics, such as type and cognitive level, on the accuracy of the ChatGPT-generated responses was assessed using logistic regression analysis. Additionally, human experts evaluated the explanations for each question, comparing them with the ChatGPT-generated answers to determine consistency. RESULTS: ChatGPT exhibited overall accuracy at 80.75 % for Taiwan's National Nursing Exam, which passes the exam. The accuracy of ChatGPT-generated answers diverged significantly across test subjects, demonstrating a hierarchy ranging from General Medicine at 88.75 %, Medical-Surgical Nursing at 80.0 %, Psychology and Community Nursing at 70.0 %, Obstetrics and Gynecology Nursing at 67.5 %, down to Basic Nursing at 63.0 %. ChatGPT had a higher probability of eliciting incorrect responses for questions with certain characteristics, notably those with clinical vignettes [odds ratio 2.19, 95 % confidence interval 1.24-3.87, P = 0.007] and complex multiple-choice questions [odds ratio 2.37, 95 % confidence interval 1.00-5.60, P = 0.049]. Furthermore, 14.25 % of ChatGPT-generated answers were inconsistent with their explanations, leading to a reduction in the overall accuracy to 74 %. CONCLUSIONS: This study reveals the ChatGPT's capabilities and limitations in nursing exam preparation, underscoring its potential as an auxiliary educational tool. It highlights the model's varied performance across different question types and notable inconsistencies between its answers and explanations. The study contributes significantly to the understanding of artificial intelligence in learning environments, guiding the future development of more effective and reliable artificial intelligence-based educational technologies. TWEETABLE ABSTRACT: New study reveals ChatGPT's potential and challenges in nursing education: Achieves 80.75 % accuracy in exam prep but faces hurdles with complex questions and logical consistency. #AIinNursing #AIinEducation #NursingExams #ChatGPT.


Subject(s)
Educational Measurement , Taiwan , Cross-Sectional Studies , Humans , Educational Measurement/methods , Licensure, Nursing , Artificial Intelligence , Education, Nursing/methods
8.
Ann Acad Med Singap ; 52(7): 364-373, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-38904502

ABSTRACT

Introduction: Lung cancer remains an important cause of cancer-related mortality in Singapore, with a greater proportion of non-smokers diagnosed with non-small cell lung cancer (NSCLC) in the past 2 decades. The higher prevalence of targetable genomic alterations in lung cancer diagnosed in Singapore compared with countries in the West, as well as the expanding therapeutic landscape for NSCLC in the era of precision medicine, are both factors that underscore the importance of efficient and effective molecular profiling. Method: This article provides consensus recommendations for biomarker testing for early-stage to advanced NSCLC. These recommendations are made from a multidisciplinary group of lung cancer experts in Singapore with the aim of improving patient care and long-term outcomes. Results: The recommendations address the considerations in both the advanced and early-stage settings, and take into account challenges in the implementation of biomarker testing as well as the limitations of available data. Biomarker testing for both tumour tissue and liquid biopsy are discussed. Conclusion: This consensus statement discusses the approaches and challenges of integrating molecular testing into clinical practice for patients with early- to late-stage NSCLC, and provides practical recommendations for biomarker testing for NSCLC patients in Singapore.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Consensus , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Singapore , Liquid Biopsy/methods , Neoplasm Staging , Precision Medicine/methods
9.
Bio Protoc ; 12(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36249859

ABSTRACT

Subcellular structures exhibit diverse behaviors in different cellular processes, including changes in morphology, abundance, and relative spatial distribution. Faithfully tracking and quantifying these changes are essential to understand their functions. However, most freely accessible methods lack integrated features for tracking multiple objects in different spectral channels simultaneously. To overcome these limitations, we have developed TRACES (Tracking of Active Cellular Structures), a customizable and open-source pipeline capable of detecting, tracking, and quantifying fluorescently labeled cellular structures in up to three spectral channels simultaneously at single-cell level. Here, we detail step-by-step instructions for performing the TRACES pipeline, including image acquisition and segmentation, object identification and tracking, and data quantification and visualization. We believe that TRACES will be a valuable tool for cell biologists, enabling them to track and measure the spatiotemporal dynamics of subcellular structures in a robust and semi-automated manner.

10.
Int J Med Sci ; 19(12): 1796-1805, 2022.
Article in English | MEDLINE | ID: mdl-36313222

ABSTRACT

Background: Keloids represent the dysregulation of cutaneous wound healing caused by aberrant fibroblast activities. Adipose-derived stem cells have been recognized as a promising treatment for keloids. However, the molecular mechanisms have not been fully elucidated. Objectives: to explicitly demonstrate the relationship between adipose-derived stem cells alleviating keloids and alterations of Col-1, Col-3, CTGF, and P-4-HB. Methods: Skin biopsies were obtained from 10 keloid patients and 9 healthy volunteers. Fibroblasts isolated from all samples were divided into two groups, one co-cultured with adipose-derived stem cells and the other grown independently. We compared the wound-healing rates, fibroblast survival rates, apoptosis rates, mRNA expressions, and protein levels of Col-1, Col-3, CTGF, and P-4-HB between separated groups. Results: We found no significant differences between normal fibroblasts and keloid fibroblasts in terms of wound-healing rate, survival rate, or apoptosis rate at the baseline. With adipose-derived stem cells, wound-healing rate and survival rate of normal fibroblasts were promoted, whereas in keloid fibroblasts, they were reduced. The apoptosis rate of normal fibroblasts and keloid fibroblasts were restrained, with the restraint in keloid fibroblasts being more evident. The protein levels of Col-3, CTGF, and P-4-HB were lower in keloid fibroblasts co-cultured with adipose-derived stem cells than in normal fibroblasts under similar conditions. Conclusions: Adipose-derived stem cells strongly suppressed keloid fibroblasts' proliferative and invasive behavior. However, adipose-derived stem cells negatively regulated keloid fibroblast apoptosis. Adipose-derived stem cells can be a potential keloid therapy worth further investigation.


Subject(s)
Keloid , Humans , Keloid/therapy , Fibroblasts/metabolism , Skin/pathology , Stem Cells/metabolism , Cells, Cultured
11.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35806225

ABSTRACT

We studied SARS-CoV-2-specific T cell responses in 22 subacute MIS-C children enrolled in 2021 and 2022 using peptide pools derived from SARS-CoV-2 spike or nonspike proteins. CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in 5 subjects, CD4+ T helper (Th) responses alone were detected in 12 subjects, and CD8+ cytotoxic T cell (CTL) responses alone were documented in 1 subject. Notably, a sizeable subpopulation of CD4- CD8- double-negative (DN) T cells out of total CD3+ T cells was observed in MIS-C (median: 14.5%; IQR 8.65-25.3) and recognized SARS-CoV-2 peptides. T cells bearing the Vß21.3 T cell receptor (TcRs), previously reported as pathogenic in the context of MIS-C, were detected in high frequencies, namely, in 2.8% and 3.9% of the CD4+ and CD8+ T cells, respectively. However, Vß21.3 CD8+ T cells that responded to SARS-CoV-2 peptides were detected in only a single subject, suggesting recognition of nonviral antigens in the majority of subjects. Subjects studied 6-14 months after MIS-C showed T cell epitope spreading, meaning the activation of T cells that recognize more SARS-CoV-2 peptides following the initial expansion of T cells that see immunodominant epitopes. For example, subjects that did not recognize nonspike proteins in the subacute phase of MIS-C showed good Th response to nonspike peptides, and/or CD8+ T cell responses not appreciable before arose over time and could be detected in the 6-14 months' follow-up. The magnitude of the Th and CTL responses also increased over time. In summary, patients with MIS-C associated with acute lymphopenia, a classical feature of MIS-C, showed a physiological response to the virus with a prominent role for virus-specific DN T cells.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/complications , Child , Humans , Peptides/metabolism , Systemic Inflammatory Response Syndrome
12.
J Vis Exp ; (183)2022 05 17.
Article in English | MEDLINE | ID: mdl-35661092

ABSTRACT

The universal utilization of fluorescence microscopy, especially super-resolution microscopy, has greatly advanced knowledge about modern biology. Conversely, the requirement of fluorophore labeling in fluorescent techniques poses significant challenges, such as photobleaching and non-uniform labeling of fluorescent probes and prolonged sample processing. In this protocol, the detailed working procedures of vibrational imaging of swelled tissue and analysis (VISTA) are presented. VISTA circumvents obstacles associated with fluorophores and achieves label-free super-resolution volumetric imaging in biological samples with spatial resolution down to 78 nm. The procedure is established by embedding cells and tissues in hydrogel, isotropically expanding the hydrogel sample hybrid, and visualizing endogenous protein distributions by vibrational imaging with stimulated Raman scattering microscopy. The method is demonstrated on both cells and mouse brain tissues. Highly correlative VISTA and immunofluorescence images were observed, validating the protein origin of imaging specificities. Exploiting such correlation, a machine learning-based image-segmentation algorithm was trained to achieve multi-component prediction of nuclei, blood vessels, neuronal cells, and dendrites from label-free mouse brain images. The procedure was further adapted to investigate pathological poly-glutamine (polyQ) aggregates in cells and amyloid-beta (Aß) plaques in brain tissues with high throughput, justifying its potential for large-scale clinical samples.


Subject(s)
Amyloid beta-Peptides , Plaque, Amyloid , Animals , Fluorescent Dyes , Hydrogels , Image Processing, Computer-Assisted , Mice , Microscopy, Fluorescence
13.
Clin Exp Immunol ; 208(3): 361-371, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35536993

ABSTRACT

Intravenous immunoglobulin (IVIG) is used as an immunomodulatory agent in many inflammatory conditions including Multisystem Inflammatory Syndrome-Children (MIS-C) and Kawasaki disease (KD). However, the exact mechanisms underlying its anti-inflammatory action are incompletely characterized. Here, we show that in KD, a pediatric acute vasculitis that affects the coronary arteries, IVIG induces a repertoire of natural Treg that recognize immunodominant peptides in the Fc heavy chain constant region. To address which antigen-presenting cell (APC) populations present Fc peptides to Treg, we studied the uptake of IgG by innate cells in subacute KD patients 2 weeks after IVIG and in children 1.6-14 years after KD. Healthy adults served as controls. IgG at high concentrations was internalized predominantly by two myeloid dendritic cell (DC) lineages, CD14+ cDC2 and ILT-4+ CD4+ tmDC mostly through Fcγ receptor (R) II and to a lesser extent FcγRIII. Following IgG internalization, these two DC lineages secreted IL-10 and presented processed Fc peptides to Treg. The validation of IVIG function in expanding Fc-specific Treg presented by CD14+ cDC2 and ILT-4+ CD4+ tmDC was addressed in a small cohort of patients with MIS-C. Taken together, these results suggest a novel immune regulatory function of IgG in activating tolerogenic innate cells and expanding Treg, which reveals an important anti-inflammatory mechanism of action of IVIG.


Subject(s)
Immunoglobulins, Intravenous , Mucocutaneous Lymph Node Syndrome , Adult , Anti-Inflammatory Agents/therapeutic use , Child , Dendritic Cells , Humans , Immunoglobulins, Intravenous/pharmacology , Immunoglobulins, Intravenous/therapeutic use , Interleukin-10 , T-Lymphocytes, Regulatory
15.
Chemosphere ; 294: 133744, 2022 May.
Article in English | MEDLINE | ID: mdl-35093422

ABSTRACT

Sulfamethoxazole (SMX) is largely prescribed for bacterial infections but raises a major concern over generation of antibiotic-resistant bacteria in the environment. This study employed various perovskite-type photocatalysts, made by two-step synthesis procedures, to remove SMX. The as-synthesized CaCu3Ti4O7 (CCTO) perovskites were characterized by XRD, SEM-EDX, and DLS. Complete degradation (∼99%; kobs = 0.0279 min-1) of SMX was recorded under UV-light irradiation for 90 min in the presence of CCTO. SMX removal rate was investigated under various reaction conditions including pH, catalyst dose, electrolyte (NaCl and NaBr). The astonishing rate of SMX removal (kobs = 0.0614 min-1) was observed with the addition of 50 mM NaBr electrolytes in the reaction, which might imply that the appearance of halogen reactive species. CCTO-MS particles were aggregated in traces when the electrolytes concentration increases, resulting in reduced rate of SMX. The SMX concentration abatement and the formation of possible intermediates during photocatalytic reaction were analyzed. The upshot of this study reveals that the inexpensive and environmentally benign CCTO perovskite photocatalyst could be applied for the treatments of emerging contaminants in the future.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Calcium Compounds , Oxides , Sulfamethoxazole/chemistry , Titanium , Water Pollutants, Chemical/chemistry
16.
Eur J Immunol ; 52(1): 123-137, 2022 01.
Article in English | MEDLINE | ID: mdl-34599760

ABSTRACT

The immunopathogenesis of multisystem inflammatory syndrome (MIS-C) in children that may follow exposure to SARS-CoV-2 is incompletely understood. Here, we studied SARS-CoV-2-specific T cells in MIS-C, Kawasaki disease (KD), and SARS-CoV-2 convalescent controls using peptide pools derived from SARS-CoV-2 spike or nonspike proteins, and common cold coronaviruses (CCC). Coordinated CD4+ and CD8+ SARS-CoV-2-specific T cells were detected in five MIS-C subjects with cross-reactivity to CCC. CD4+ and CD8+ T-cell responses alone were documented in three and one subjects, respectively. T-cell specificities in MIS-C did not correlate with disease severity and were similar to SARS-CoV-2 convalescent controls. T-cell memory and cross-reactivity to CCC in MIS-C and SARS-CoV-2 convalescent controls were also similar. The chemokine receptor CCR6, but not CCR9, was highly expressed on SARS-CoV-2-specific CD4+ but not on CD8+ T cells. Only two of 10 KD subjects showed a T-cell response to CCC. Enumeration of myeloid APCs revealed low cell precursors in MIS-C subjects compared to KD. In summary, children with MIS-C mount a normal T-cell response to SARS-CoV-2 with no apparent relationship to antecedent CCC exposure. Low numbers of tolerogenic myeloid DCs may impair their anti-inflammatory response.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , Immunity, Cellular , Immunologic Memory , Mucocutaneous Lymph Node Syndrome , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , COVID-19/immunology , Child , Child, Preschool , Female , Humans , Infant , Male , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/immunology
17.
J Reprod Immunol ; 149: 103464, 2022 02.
Article in English | MEDLINE | ID: mdl-34953325

ABSTRACT

We studied the T cell response to SARS-CoV-2 spike and non-spike peptide epitopes in eight convalescent pregnant women together with the immune monitoring that included innate tolerogenic dendritic cell populations important to maintain the immunological mother/fetus interface to address a potential risk for the antiviral cellular response in the outcome of pregnancy. Four subjects had pre-existing chronic inflammatory conditions that could have potentially affected the SARS-CoV-2-specific T cell response. Seven of eight subjects responded to SARS-CoV-2 peptides with differences within CD4+ T helper (Th) and CD8+ cytotoxic T cells (CTL). SARS-CoV-2-specific inducible regulatory T cells (iTreg) were numerous in circulation. CD4+ T cell memory included central memory T cells (TCM) and effector memory (TEM). As far as the CD8+ memory repertoire, TCM and TEM were very low or absent in eight of eight subjects and only effector cells that revert to CD45RA+, defined as TEMRA were measurable in circulation. T cells were in the normal range in all subjects regardless of pre-existing inflammatory conditions. The immune phenotype indicated the expansion and activation of tolerogenic myeloid dendritic cells including CD14+ cDC2 and CD4+ ILT-4+ tmDC. In summary, SARS-CoV-2 infection induced a physiological anti-viral T cell response in pregnant women that included SARS-CoV-2-specific iTreg with no negative effects on the tolerogenic innate dendritic cell repertoire relevant to the immune homeostasis of the maternal-fetal interface. All eight subjects studied delivered full-term, healthy infants.


Subject(s)
COVID-19/immunology , Memory T Cells/immunology , Placenta/immunology , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Female , Humans , Pregnancy , Prospective Studies
18.
J Cell Sci ; 134(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34308971

ABSTRACT

At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT, enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs), phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.


Subject(s)
Antigens , Centrosome , Humans , Microtubules , Mitosis , Spindle Apparatus
19.
Nat Commun ; 12(1): 3648, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131146

ABSTRACT

Innovations in high-resolution optical imaging have allowed visualization of nanoscale biological structures and connections. However, super-resolution fluorescence techniques, including both optics-oriented and sample-expansion based, are limited in quantification and throughput especially in tissues from photobleaching or quenching of the fluorophores, and low-efficiency or non-uniform delivery of the probes. Here, we report a general sample-expansion vibrational imaging strategy, termed VISTA, for scalable label-free high-resolution interrogations of protein-rich biological structures with resolution down to 78 nm. VISTA achieves decent three-dimensional image quality through optimal retention of endogenous proteins, isotropic sample expansion, and deprivation of scattering lipids. Free from probe-labeling associated issues, VISTA offers unbiased and high-throughput tissue investigations. With correlative VISTA and immunofluorescence, we further validated the imaging specificity of VISTA and trained an image-segmentation model for label-free multi-component and volumetric prediction of nucleus, blood vessels, neuronal cells and dendrites in complex mouse brain tissues. VISTA could hence open new avenues for versatile biomedical studies.


Subject(s)
Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Animals , Brain/diagnostic imaging , Brain/pathology , Female , Fluorescence , Fluorescent Antibody Technique , HeLa Cells , Humans , Machine Learning , Male , Mice , Mice, Inbred C57BL , Models, Theoretical , Zebrafish
20.
Analyst ; 146(13): 4135-4145, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33949430

ABSTRACT

Amyloid aggregation, formed by aberrant proteins, is a pathological hallmark for neurodegenerative diseases, including Alzheimer's disease and Huntington's disease. High-resolution holistic mapping of the fine structures from these aggregates should facilitate our understanding of their pathological roles. Here, we achieved label-free high-resolution imaging of the polyQ and the amyloid-beta (Aß) aggregates in cells and tissues utilizing a sample-expansion stimulated Raman strategy. We further focused on characterizing the Aß plaques in 5XFAD mouse brain tissues. 3D volumetric imaging enabled visualization of the whole plaques, resolving both the fine protein filaments and the surrounding components. Coupling our expanded label-free Raman imaging with machine learning, we obtained specific segmentation of aggregate cores, peripheral filaments together with cell nuclei and blood vessels by pre-trained convolutional neural network models. Combining with 2-channel fluorescence imaging, we achieved a 6-color holistic view of the same sample. This ability for precise and multiplex high-resolution imaging of the protein aggregates and their micro-environment without the requirement of labeling would open new biomedical applications.


Subject(s)
Alzheimer Disease , Protein Aggregates , Alzheimer Disease/diagnostic imaging , Amyloid , Amyloid beta-Peptides , Animals , Mice , Plaque, Amyloid
SELECTION OF CITATIONS
SEARCH DETAIL
...