Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 May 15.
Article in English | MEDLINE | ID: mdl-38747577

ABSTRACT

Certain bacteria demonstrate the ability to target and colonize the tumor microenvironment, a characteristic that positions them as innovative carriers for delivering various therapeutic agents in cancer therapy. Nevertheless, our understanding of how bacteria adapt their physiological condition to the tumor microenvironment remains elusive. In this work, we employed liquid chromatography-tandem mass spectrometry to examine the proteome of E. coli colonized in murine tumors. Compared to E. coli cultivated in the rich medium, we found that E. coli colonized in tumors notably upregulated the processes related to ferric ions, including the enterobactin biosynthesis and iron homeostasis. This finding indicated that the tumor is an iron-deficient environment to E. coli. We also found that the colonization of E. coli in the tumor led to an increased expression of lipocalin 2 (LCN2), a host protein that can sequester the enterobactin. We therefore engineered E. coli in order to evade the nutritional immunity provided by LCN2. By introducing the IroA cluster, the E. coli synthesizes the glycosylated enterobactin, which creates steric hindrance to avoid the LCN2 sequestration. The IroA-E. coli showed enhanced resistance to LCN2 and significantly improved the anti-tumor activity in mice. Moreover, the mice cured by the IroA-E. coli treatment became resistant to the tumor re-challenge, indicating the establishment of immunological memory. Overall, our study underscores the crucial role of bacteria's ability to acquire ferric ions within the tumor microenvironment for effective cancer therapy.


Subject(s)
Escherichia coli , Iron , Lipocalin-2 , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Lipocalin-2/metabolism , Lipocalin-2/genetics , Mice , Iron/metabolism , Neoplasms/therapy , Neoplasms/immunology , Enterobactin/metabolism , Tumor Microenvironment , Cell Line, Tumor
2.
Mar Drugs ; 19(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669051

ABSTRACT

Application of LC-MS/MS-based molecular networking indicated the ethanol extract of octocoral Asterospicularia laurae is a potential source for the discovery of new xenicane derivatives. A natural product investigation of this soft coral resulted in the isolation of four new xenicane diterpenoids, asterolaurins O‒R (1‒4), together with six known compounds, xeniolide-A (5), isoxeniolide-A (6), xeniolide-B (7), 7,8-epoxyxeniolide-B (8), 7,8-oxido-isoxeniolide-A (9), and 9-hydroxyxeniolide-F (10). The structures of isolated compounds were characterized by employing spectroscopic analyses, including 2D-NMR (COSY, HMQC, HMBC, and NOESY) and high-resolution electrospray ionization mass spectrometry (HRESIMS). Asterolaurin O is the first case of brominated tricarbocyclic type floridicin in the family Xeniidae. Concerning bioactivity, the cytotoxic activity of those isolates was evaluated. As a result, compounds 1 and 2 demonstrated a selective cytotoxic effect against the MCF-7 cell line at IC50 of 14.7 and 25.1 µM, respectively.


Subject(s)
Anthozoa/chemistry , Antineoplastic Agents/isolation & purification , Diterpenes/isolation & purification , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chromatography, Liquid , Diterpenes/chemistry , Diterpenes/pharmacology , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Taiwan , Tandem Mass Spectrometry
3.
Antioxidants (Basel) ; 9(9)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947878

ABSTRACT

Some withanolides, particularly the family of steroidal lactones, show anticancer effects, but this is rarely reported for withanolide C (WHC)-especially anti-breast cancer effects. The subject of this study is to evaluate the ability of WHC to regulate the proliferation of breast cancer cells, using both time and concentration in treatment with WHC. In terms of ATP depletion, WHC induced more antiproliferation to three breast cancer cell lines, SKBR3, MCF7, and MDA-MB-231, than to normal breast M10 cell lines. SKBR3 and MCF7 cells showing higher sensitivity to WHC were used to explore the antiproliferation mechanism. Flow cytometric apoptosis analyses showed that subG1 phase and annexin V population were increased in breast cancer cells after WHC treatment. Western blotting showed that cleaved forms of the apoptotic proteins poly (ADP-ribose) polymerase (c-PARP) and cleaved caspase 3 (c-Cas 3) were increased in breast cancer cells. Flow cytometric oxidative stress analyses showed that WHC triggered reactive oxygen species (ROS) and mitochondrial superoxide (MitoSOX) production as well as glutathione depletion. In contrast, normal breast M10 cells showed lower levels of ROS and annexin V expression than breast cancer cells. Flow cytometric DNA damage analyses showed that WHC triggered γH2AX and 8-oxo-2'-deoxyguanosine (8-oxodG) expression in breast cancer cells. Moreover, N-acetylcysteine (NAC) pretreatment reverted oxidative stress-mediated ATP depletion, apoptosis, and DNA damage. Therefore, WHC kills breast cancer cells depending on oxidative stress-associated mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...