Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(22): e202303843, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38217885

ABSTRACT

The development of hydrogels based on dextrans, pullulan and lentinan to be used in biomedical applications including tissue engineering is reported. Despite the fact that selected polysaccharides such as hyaluronic acid are well established, little is known, how these polysaccharides can be chemically modified to create hydrogels under controlled conditions. In this study we present a small library of chemically modified polysaccharides which are used for a divergent approach to achieve biomedical relevant hydrogels. In this case the crosslinking is based on thio ether formation between thiol modified donor and vinylsulfone or maleimide modified acceptor components. Successful synthesis of the linker systems and coupling at the polysaccharides, hydrogel formation takes place under physiological conditions. We extended the study by coupling small molecules like adhesion factors for increasing cell compatibility as well as a dye for further studies. The different hydrogels were studied to their rheological properties, water uptake, their permeability, biodegrability and their cytotoxicity.


Subject(s)
Dextrans , Glucans , Hydrogels , Hydrogels/chemistry , Dextrans/chemistry , Lentinan , Tissue Engineering , Polysaccharides/chemistry
2.
Cells ; 12(14)2023 07 09.
Article in English | MEDLINE | ID: mdl-37508481

ABSTRACT

The use of three-dimensional (3D) cell cultures has become increasingly popular in the contexts of drug discovery, disease modelling, and tissue engineering, as they aim to replicate in vivo-like conditions. To achieve this, new hydrogels are being developed to mimic the extracellular matrix. Testing the ability of these hydrogels is crucial, and the presented 3D-printed microfluidic perfusion system offers a novel solution for the parallel cultivation and evaluation of four separate 3D cell cultures. This system enables easy microscopic monitoring of the hydrogel-embedded cells and significantly reduces the required volumes of hydrogel and cell suspension. This cultivation device is comprised of two 3D-printed parts, which provide four cell-containing hydrogel chambers and the associated perfusion medium chambers. An interfacing porous membrane ensures a defined hydrogel thickness and prevents flow-induced hydrogel detachment. Integrated microfluidic channels connect the perfusion chambers to the overall perfusion system, which can be operated in a standard CO2-incubator. A 3D-printed adapter ensures the compatibility of the cultivation device with standard imaging systems. Cultivation and cell staining experiments with hydrogel-embedded murine fibroblasts confirmed that cell morphology, viability, and growth inside this cultivation device are comparable with those observed within standard 96-well plates. Due to the high degree of customization offered by additive manufacturing, this system has great potential to be used as a customizable platform for 3D cell culture applications.


Subject(s)
Hydrogels , Microfluidics , Animals , Mice , Cell Culture Techniques , Perfusion , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...