Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4428, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789448

ABSTRACT

Subducting sedimentary layer typically contains water and hydrated clay minerals. The stability of clay minerals under such hydrous subduction environment would therefore constraint the lithology and physical properties of the subducting slab interface. Here we show that pyrophyllite (Al2Si4O10(OH)2), one of the representative clay minerals in the alumina-silica-water (Al2O3-SiO2-H2O, ASH) system, breakdowns to contain further hydrated minerals, gibbsite (Al(OH)3) and diaspore (AlO(OH)), when subducts along a water-saturated cold subduction geotherm. Such a hydration breakdown occurs at a depth of ~135 km to uptake water by ~1.8 wt%. Subsequently, dehydration breakdown occurs at ~185 km depth to release back the same amount of water, after which the net crystalline water content is preserved down to ~660 km depth, delivering a net amount of ~5.0 wt% H2O in a phase assemblage containing δ-AlOOH and phase Egg (AlSiO3(OH)). Our results thus demonstrate the importance of subducting clays to account the delivery of ~22% of water down to the lower mantle.

2.
Chemistry ; 30(32): e202400536, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38527310

ABSTRACT

In this study, we conduct extensive high-pressure experiments to investigate phase stability in the cobalt-nitrogen system. Through a combination of synthesis in a laser-heated diamond anvil cell, first-principles calculations, Raman spectroscopy, and single-crystal X-ray diffraction, we establish the stability fields of known high-pressure phases, hexagonal NiAs-type CoN, and marcasite-type CoN2 within the pressure range of 50-90 GPa. We synthesize and characterize previously unknown nitrides, Co3N2, Pnma-CoN and two polynitrides, CoN3 and CoN5, within the pressure range of 90-120 GPa. Both polynitrides exhibit novel types of polymeric nitrogen chains and networks. CoN3 feature branched-type nitrogen trimers (N3) and CoN5 show π-bonded nitrogen chain. As the nitrogen content in the cobalt nitride increases, the CoN6 polyhedral frameworks transit from face-sharing (in CoN) to edge-sharing (in CoN2 and CoN3), and finally to isolated (in CoN5). Our study provides insights into the intricate interplay between structure evolution, bonding arrangements, and high-pressure synthesis in polynitrides, expanding the knowledge for the development of advanced energy materials.

3.
Dalton Trans ; 53(1): 40-44, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38054559

ABSTRACT

The inorganic pyrocarbonate salt Na2[C2O5] crystallizes in the acentric, monoclinic space group P21 with Z = 2. It contains monovalent alkali metal cations together with isolated pyrocarbonate anions. The [C2O5]2--groups consist of two planar [CO3]2--groups which are slightly tilted with respect to each other around the bridging oxygen atom. Na2[C2O5] was synthesized in a laser-heated diamond anvil cell at 20(2) GPa by heating a mixture of Na2[CO3] + CO2 to ≈800(200) K. Its crystal structure was obtained by single crystal synchrotron X-ray diffraction and confirmed by density functional theory-based calculations in combination with Raman spectroscopy. Second harmonic generation measurements verified the acentric space group symmetry. The crystal structure is characterized by alternating layers of Na+-cations and [C2O5]2--complex anions.

4.
Sci Adv ; 9(50): eadi6096, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100581

ABSTRACT

Giant impact-driven redox processes in the atmosphere and magma ocean played crucial roles in the evolution of Earth. However, because of the absence of rock records from that time, understanding these processes has proven challenging. Here, we present experimental results that simulate the giant impact-driven reactions between iron and volatiles (H2O and CO2) using x-ray free electron laser (XFEL) as fast heat pump and structural probe. Under XFEL pump, iron is oxidized to wüstite (FeO), while volatiles are reduced to H2 and CO. Furthermore, iron oxidation proceeds into formation of hydrides (γ-FeHx) and siderite (FeCO3), implying redox boundary near 300-km depth. Through quantitative analysis on reaction products, we estimate the volatile and FeO budgets in bulk silicate Earth, supporting the Theia hypothesis. Our findings shed light on the fast and short-lived process that led to reduced atmosphere, required for the emergence of prebiotic organic molecules in the early Earth.

5.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38015123

ABSTRACT

The dynamic diamond anvil cell (dDAC) technique has attracted great interest because it possibly provides a bridge between static and dynamic compression studies with fast, repeatable, and controllable compression rates. The dDAC can be a particularly useful tool to study the pathways and kinetics of phase transitions under dynamic pressurization if simultaneous measurements of physical quantities are possible as a function of time. We here report the development of a real-time event monitoring (RTEM) system with dDAC, which can simultaneously record the volume, pressure, optical image, and structure of materials during dynamic compression runs. In particular, the volume measurement using both Fabry-Pérot interferogram and optical images facilitates the construction of an equation of state (EoS) using the dDAC in a home-laboratory. We also developed an in-line ruby pressure measurement (IRPM) system to be deployed at a synchrotron x-ray facility. This system provides simultaneous measurements of pressure and x-ray diffraction in low and narrow pressure ranges. The EoSs of ice VI obtained from the RTEM and the x-ray diffraction data with the IRPM are consistent with each other. The complementarity of both RTEM and IRPM systems will provide a great opportunity to scrutinize the detailed kinetic pathways of phase transitions using dDAC.

6.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37540120

ABSTRACT

High-pressure and high-temperature experiments using a resistively heated diamond anvil cell have the advantage of heating samples homogeneously with precise temperature control. Here, we present the design and performance of a graphite resistive heated diamond anvil cell (GRHDAC) setup for powder and single-crystal x-ray diffraction experiments developed at the Extreme Conditions Beamline (P02.2) at PETRA III, Hamburg, Germany. In the GRHDAC, temperatures up to 2000 K can be generated at high pressures by placing it in a water-cooled vacuum chamber. Temperature estimates from thermocouple measurements are within +/-35 K at the sample position up to 800 K and within +90 K between 800 and 1400 K when using a standard seat combination of cBN and WC. Isothermal compression at high temperatures can be achieved by employing a remote membrane control system. The advantage of the GRHDAC is demonstrated through the study of geophysical processes in the Earth's crust and upper mantle region.

7.
Nat Commun ; 14(1): 606, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36739276

ABSTRACT

When affected by impact, quartz (SiO2) undergoes an abrupt transformation to glass lamellae, the planar deformation features (PDFs). This shock effect is the most reliable indicator of impacts and is decisive in identifying catastrophic collisions in the Earth´s record such as the Chicxulub impact. Despite the significance of PDFs, there is still no consensus how they form. Here, we present time-resolved in-situ synchroton X-ray diffraction data of single-crystal quartz rapidly compressed in a dynamic diamond anvil cell. These experiments provide evidence for the transformation of quartz at pressures above 15 GPa to lamellae of a metastable rosiaite (PbSb2O6)-type high-pressure phase with octahedrally coordinated silicon. This phase collapses during decompression to amorphous lamellae, which closely resemble PDFs in naturally shocked quartz. The identification of rosiaite-structured silica provides thus an explanation for lamellar amorphization of quartz. Furthermore, it suggests that the mixed phase region of the Hugoniot curve may be related to the progressive formation of rosiaite-structured silica.

8.
Sci Rep ; 12(1): 17294, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36241757

ABSTRACT

Both cerium (Ce) and praseodymium (Pr) undergo a volume collapse transition under compression that originate from similar electronic mechanisms. Yet the outcome could not be more different. In the case of Ce with one affected 4f electron the volume collapse leaves the crystal symmetry intact, whereas for Pr with two 4f electrons the crystal symmetry changes from a distorted face centered cubic structure to a lower symmetry orthorhombic structure. In this paper, we present a study of the effect of strain/compression rate spanning nearly 4 orders of magnitude on the volume collapse phase transitions in Ce and Pr. These dynamic compression experiments in a diamond anvil cell also reveal kinetic differences between the phase transformations observed in these two materials. The transition cannot be overdriven in pressure in Ce, which indicates a fast kinetic process, whereas fast compression rates in Pr lead to a shift of the phase boundary to higher pressures, pointing to slower kinetics possibly due to the realization of a new crystal structure.

9.
J Synchrotron Radiat ; 29(Pt 5): 1167-1179, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36073875

ABSTRACT

A gasket is an important constituent of a diamond anvil cell (DAC) assembly, responsible for the sample chamber stability at extreme conditions for X-ray diffraction studies. In this work, we studied the performance of gaskets made of metallic glass Fe0.79Si0.07B0.14 in a number of high-pressure X-ray diffraction (XRD) experiments in DACs equipped with conventional and toroidal-shape diamond anvils. The experiments were conducted in either axial or radial geometry with X-ray beams of micrometre to sub-micrometre size. We report that Fe0.79Si0.07B0.14 metallic glass gaskets offer a stable sample environment under compression exceeding 1 Mbar in all XRD experiments described here, even in those involving small-molecule gases (e.g. Ne, H2) used as pressure-transmitting media or in those with laser heating in a DAC. Our results emphasize the material's importance for a great number of delicate experiments conducted under extreme conditions. They indicate that the application of Fe0.79Si0.07B0.14 metallic glass gaskets in XRD experiments for both axial and radial geometries substantially improves various aspects of megabar experiments and, in particular, the signal-to-noise ratio in comparison to that with conventional gaskets made of Re, W, steel or other crystalline metals.

10.
Inorg Chem ; 61(26): 9855-9859, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35730801

ABSTRACT

We have synthesized Pb[C2O5], an inorganic pyrocarbonate salt, in a laser-heated diamond anvil cell (LH-DAC) at 30 GPa by heating a Pb[CO3] + CO2 mixture to ≈2000(200) K. Inorganic pyrocarbonates contain isolated [C2O5]2- groups without functional groups attached. The [C2O5]2- groups consist of two oxygen-sharing [CO3]3- groups. Pb[C2O5] was characterized by synchrotron-based single-crystal structure refinement, Raman spectroscopy, and density functional theory calculations. Pb[C2O5] is isostructural to Sr[C2O5] and crystallizes in the monoclinic space group P21/c with Z = 4. The synthesis of Pb[C2O5] demonstrates that, just like in other carbonates, cation substitution is possible and that therefore inorganic pyrocarbonates are a novel family of carbonates, in addition to the established sp2 and sp3 carbonates.

11.
Rev Sci Instrum ; 93(3): 033904, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35365016

ABSTRACT

The success of high-pressure research relies on the inventive design of pressure-generating instruments and materials used for their construction. In this study, the anvils of conical frustum or disk shapes with flat or modified culet profiles (toroidal or beveled) were prepared by milling an Ia-type diamond plate made of a (100)-oriented single crystal using the focused ion beam. Raman spectroscopy and synchrotron x-ray diffraction were applied to evaluate the efficiency of the anvils for pressure multiplication in different modes of operation: as single indenters forced against the primary anvil in diamond anvil cells (DACs) or as pairs of anvils forced together in double-stage DACs (dsDACs). All types of secondary anvils performed well up to about 250 GPa. The pressure multiplication factor of single indenters appeared to be insignificantly dependent on the shape of the anvils and their culets' profiles. The enhanced pressure multiplication factor found for pairs of toroidally shaped secondary anvils makes this design very promising for ultrahigh-pressure experiments in dsDACs.

12.
J Am Chem Soc ; 144(7): 2899-2904, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35134291

ABSTRACT

The synthesis of a novel type of carbonate, namely of the inorganic pyrocarbonate salt Sr[C2O5], which contains isolated [C2O5]2--groups, significantly extends the crystal chemistry of inorganic carbonates beyond the established sp2- and sp3-carbonates. We synthesized Sr[C2O5] in a laser-heated diamond anvil cell by reacting Sr[CO3] with CO2. By single crystal synchrotron diffraction, Raman spectroscopy, and density functional theory (DFT) calculations, we show that it is a pyrocarbonate salt. Sr[C2O5] is the first member of a novel family of inorganic carbonates. We predict, based on DFT calculations, that further inorganic pyrocarbonates can be obtained and that these will be relevant to geoscience and may provide a better understanding of reactions converting CO2 into useful inorganic compounds.

13.
Inorg Chem ; 61(2): 1091-1101, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34962388

ABSTRACT

Magnetite, Fe3O4, is the oldest known magnetic mineral and archetypal mixed-valence oxide. Despite its recognized role in deep Earth processes, the behavior of magnetite at extreme high-pressure high-temperature (HPHT) conditions remains insufficiently studied. Here, we report on single-crystal synchrotron X-ray diffraction experiments up to ∼80 GPa and 5000 K in diamond anvil cells, which reveal two previously unknown Fe3O4 polymorphs, γ-Fe3O4 with the orthorhombic Yb3S4-type structure and δ-Fe3O4 with the modified Th3P4-type structure. The latter has never been predicted for iron compounds. The decomposition of Fe3O4 at HPHT conditions was found to result in the formation of exotic phases, Fe5O7 and Fe25O32, with complex structures. Crystal-chemical analysis of iron oxides suggests the high-spin to low-spin crossover in octahedrally coordinated Fe3+ in the pressure interval between 43 and 51 GPa. Our experiments demonstrate that HPHT conditions promote the formation of ferric-rich Fe-O compounds, thus arguing for the possible involvement of magnetite in the deep oxygen cycle.

14.
J Synchrotron Radiat ; 28(Pt 6): 1747-1757, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34738928

ABSTRACT

A laser heating system for samples confined in diamond anvil cells paired with in situ X-ray diffraction measurements at the Extreme Conditions Beamline of PETRA III is presented. The system features two independent laser configurations (on-axis and off-axis of the X-ray path) allowing for a broad range of experiments using different designs of diamond anvil cells. The power of the continuous laser source can be modulated for use in various pulsed laser heating or flash heating applications. An example of such an application is illustrated here on the melting curve of iron at megabar pressures. The optical path of the spectroradiometry measurements is simulated with ray-tracing methods in order to assess the level of present aberrations in the system and the results are compared with other systems, that are using simpler lens optics. Based on the ray-tracing the choice of the first achromatic lens and other aspects for accurate temperature measurements are evaluated.

15.
Inorg Chem ; 60(19): 14504-14508, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34520201

ABSTRACT

We have synthesized the orthocarbonate Sr3[CO4]O in a laser-heated diamond anvil cell at 20 and 30 GPa by heating to ≈3000 (300) K. Afterward, we recovered the orthocarbonate with [CO4]4- groups at ambient conditions. Single-crystal diffraction shows the presence of [CO4]4- groups, i.e., sp3-hybridized carbon tetrahedrally coordinated by covalently bound oxygen atoms. The [CO4]4- tetrahedra are located in a cage formed by corner-sharing OSr6 octahedra, i.e., octahedra with oxygen as a central ion, forming an antiperovskite-type structure. At high pressures, the octahedra are nearly ideal and slightly rotated. The high-pressure phase is tetragonal (I4/mcm). Upon pressure release, there is a phase transition with a symmetry lowering to an orthorhombic phase (Pnma), where the octahedra tilt and deform slightly.

16.
J Synchrotron Radiat ; 28(Pt 5): 1393-1416, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34475288

ABSTRACT

The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.

17.
Sci Rep ; 11(1): 14859, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34290284

ABSTRACT

It is qualitatively well known that kinetics related to nucleation and growth can shift apparent phase boundaries from their equilibrium value. In this work, we have measured this effect in Bi using time-resolved X-ray diffraction with unprecedented 0.25 ms time resolution, accurately determining phase transition pressures at compression rates spanning five orders of magnitude (10-2-103 GPa/s) using the dynamic diamond anvil cell. An over-pressurization of the Bi-III/Bi-V phase boundary is observed at fast compression rates for different sample types and stress states, and the largest over-pressurization that is observed is ΔP = 2.5 GPa. The work presented here paves the way for future studies of transition kinetics at previously inaccessible compression rates.

18.
Nat Commun ; 12(1): 1496, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674600

ABSTRACT

The blueschist to eclogite transition is one of the major geochemical-metamorphic processes typifying the subduction zone, which releases fluids triggering earthquakes and arc volcanism. Although glaucophane is an index hydrous mineral for the blueschist facies, its stability at mantle depths in diverse subduction regimes of contemporary and early Earth has not been experimentally determined. Here, we show that the maximum depth of glaucophane stability increases with decreasing thermal gradients of the subduction system. Along cold subduction geotherm, glaucophane remains stable down ca. 240 km depth, whereas it dehydrates and breaks down at as shallow as ca. 40 km depth under warm subduction geotherm or the Proterozoic tectonic setting. Our results imply that secular cooling of the Earth has extended the stability of glaucophane and consequently enabled the transportation of water into deeper interior of the Earth, suppressing arc magmatism, volcanism, and seismic activities along subduction zones.

19.
Angew Chem Int Ed Engl ; 59(26): 10321-10326, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32212190

ABSTRACT

Polynitrides are intrinsically thermodynamically unstable at ambient conditions and require peculiar synthetic approaches. Now, a one-step synthesis of metal-inorganic frameworks Hf4 N20 ⋅N2 , WN8 ⋅N2 , and Os5 N28 ⋅3 N2 via direct reactions between elements in a diamond anvil cell at pressures exceeding 100 GPa is reported. The porous frameworks (Hf4 N20 , WN8 , and Os5 N28 ) are built from transition-metal atoms linked either by polymeric polydiazenediyl (polyacetylene-like) nitrogen chains or through dinitrogen units. Triply bound dinitrogen molecules occupy channels of these frameworks. Owing to conjugated polydiazenediyl chains, these compounds exhibit metallic properties. The high-pressure reaction between Hf and N2 also leads to a non-centrosymmetric polynitride Hf2 N11 that features double-helix catena-poly[tetraz-1-ene-1,4-diyl] nitrogen chains [-N-N-N=N-]∞ .

20.
J Phys Chem Lett ; 11(5): 1828-1834, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32048851

ABSTRACT

Superconductivity near room temperature in the sulfur-hydrogen system arises from a sequence of reactions at high pressures, with X-ray diffraction experiments playing a central role in understanding these chemical-structural transformations and the corresponding S:H stoichiometry. Here we document X-ray irradiation acting as both a probe and as a driver of chemical reaction in this dense hydride system. We observe a reaction between molecular hydrogen (H2) and elemental sulfur (S8) under high pressure, induced directly by X-ray illumination, at photon energies of 12 keV using a free electron laser. The rapid synthesis of hydrogen sulfide (H2S) at 0.3 GPa was confirmed by optical observations, spectroscopic measurements, and microstructural changes detected by X-ray diffraction. These results document X-ray induced chemical synthesis of superconductor-forming dense hydrides, revealing an alternative production strategy and confirming the disruptive nature of X-ray exposure in studies on high-pressure hydrogen chalcogenides, from water to high-temperature superconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...