Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anesth Analg ; 102(5): 1456-62, 2006 May.
Article in English | MEDLINE | ID: mdl-16632826

ABSTRACT

Recently, Datex-Ohmeda introduced the Entropy Moduletrade mark for measuring depth of anesthesia. Based on the Shannon entropy of the electroencephalogram, state entropy (SE) and response entropy (RE) are computed. We investigated the dose-response relationship of SE and RE during propofol anesthesia in comparison with the Bispectral Indextrade mark (BIS). Twenty patients were studied without surgical stimulus. Anesthesia was induced by a constant propofol infusion of 2000 mg/h (451 +/- 77 microg x min(-1) x kg(-1)) via a large forearm vein. Propofol was infused until substantial burst suppression occurred (more than 50%) or mean arterial blood pressure decreased to <60 mm Hg. Hereafter, infusions were stopped until recovery of BIS values up to 60 was reached. Subsequently, the constant propofol infusion of 2000 mg/h was restarted to increase depth of anesthesia and again decreased (infusion was stopped) within the BIS value range of 40-60. The coefficient of determination (R2) and the prediction probability (P(K)) were calculated to evaluate the performance of SE, RE, and BIS to predict changing propofol effect-site concentrations. R2 values for SE, RE, and BIS of 0.88 +/- 0.08, 0.89 +/- 0.07, and 0.92 +/- 0.06, respectively, were similar. The calculated P(K) values, however, revealed a significant difference between SE and RE compared with BIS, with P(K) = 0.77 +/- 0.09, 0.76 +/- 0.10, and 0.84 +/- 0.06, respectively. BIS seems to show slight advantages in predicting propofol effect-site concentrations compared with SE and RE, as measured by P(K) but not as measured by R2.


Subject(s)
Electroencephalography/drug effects , Entropy , Propofol/pharmacology , Adult , Dose-Response Relationship, Drug , Electroencephalography/methods , Female , Humans , Male , Middle Aged , Monitoring, Intraoperative/methods , Propofol/blood
2.
Anesthesiology ; 101(6): 1275-82, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15564933

ABSTRACT

BACKGROUND: Recently, entropy algorithms have been proposed as electroencephalographic measures of anesthetic drug effects. Datex-Ohmeda (Helsinki, Finland) introduced the Entropy Module, a new electroencephalographic monitor designed for measuring depth of anesthesia. The monitor calculates a state entropy (SE) computed over the frequency range of 0.8-32 Hz and a response entropy (RE) computed over the frequency range of 0.8-47 Hz. The authors investigated the dose-response relation of SE and RE during sevoflurane anesthesia in comparison with the Bispectral Index (BIS). METHODS: Sixteen patients were studied without surgical stimulus. Anesthesia was induced by sevoflurane inhalation with a tight-fitting facemask. Sevoflurane concentrations were increased and subsequently decreased and increased two to four times until the measurement was stopped and patients were intubated for surgery. The performances of SE, RE, and BIS to predict the estimated sevoflurane effect site concentration, obtained by simultaneous pharmacokinetic and pharmacodynamic modeling, were compared by calculating the correlation coefficients and the prediction probability. RESULTS: State entropy, RE, and BIS values decreased continuously over the observed concentration range of sevoflurane. Correlation coefficients were slightly but not significantly better for entropy parameters (0.87 +/- 0.09 and 0.86 +/- 0.10 for SE and RE, respectively) than for BIS (0.85 +/- 0.12). Calculating the prediction probability confirmed these results with a prediction probability of 0.84 +/- 0.05 and 0.82 +/- 0.06 for SE and RE, respectively, and 0.80 +/- 0.06 for BIS. CONCLUSION: State entropy and RE seem to be useful electroencephalographic measures of sevoflurane drug effect.


Subject(s)
Anesthesia, Inhalation , Anesthetics, Inhalation , Electroencephalography/drug effects , Methyl Ethers , Adult , Algorithms , Anesthetics, Inhalation/pharmacokinetics , Data Interpretation, Statistical , Entropy , Female , Humans , Male , Methyl Ethers/pharmacokinetics , Models, Biological , Monitoring, Intraoperative , Predictive Value of Tests , Sevoflurane
SELECTION OF CITATIONS
SEARCH DETAIL
...