Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 158: 115-131, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36427688

ABSTRACT

Patient-derived tumor organoids have been established as promising tools for in vitro modelling of multiple tumors, including cholangiocarcinoma (CCA). However, organoids are commonly cultured in basement membrane extract (BME) which does not recapitulate the intricacies of the extracellular matrix (ECM). We combined CCA organoids (CCAOs) with native tumor and liver scaffolds, obtained by decellularization, to effectuate a model to study the interaction between epithelial tumor cells and their surrounding ECM. Decellularization resulted in removal of cells while preserving ECM structure and retaining important characteristics of the tissue origin, including stiffness and presence of desmoplasia. The transcriptome of CCAOs in a tumor scaffold much more resembled that of patient-paired CCA tissue in vivo compared to CCAOs cultured in BME or liver scaffolds. This was accompanied by an increase in chemoresistance to clinically-relevant chemotherapeutics. CCAOs in decellularized scaffolds revealed environment-dependent proliferation dynamics, driven by the occurrence of epithelial-mesenchymal transition. Furthermore, CCAOs initiated an environment-specific desmoplastic reaction by increasing production of multiple collagen types. In conclusion, convergence of organoid-based models with native ECM scaffolds will lead to better understanding of the in vivo tumor environment. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) influences various facets of tumor behavior. Understanding the exact role of the ECM in controlling tumor cell fate is pertinent to understand tumor progression and develop novel therapeutics. This is particularly the case for cholangiocarcinoma (CCA), whereby the ECM displays a distinct tumor environment, characterized by desmoplasia. However, current models to study the interaction between epithelial tumor cells and the environment are lacking. We have developed a fully patient-derived model encompassing CCA organoids (CCAOs) and human decellularized tumor and tumor-free liver ECM. The tumor ECM induced recapitulation of various aspects of CCA, including migration dynamics, transcriptome and proteome profiles, and chemoresistance. Lastly, we uncover that epithelial tumor cells contribute to matrix deposition, and that this phenomenon is dependent on the level of desmoplasia already present.


Subject(s)
Cholangiocarcinoma , Neoplasms, Glandular and Epithelial , Humans , Extracellular Matrix/chemistry , Collagen , Organoids , Tissue Scaffolds/chemistry , Tissue Engineering
2.
Int J Cancer ; 152(12): 2607-2614, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36346104

ABSTRACT

Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease of the biliary tree and a risk factor for development of cholangiocarcinoma (CCA). The pathogenesis of PSC-related CCA is largely unclear, although it is assumed that chronic inflammatory environment plays a pivotal role. We aimed to investigate the effect of inflammation-related cytokines in PSC on the proliferation rate of cancer cells. For this, the proliferation index in PSC-CCA and sporadic CCA was determined by Ki-67 immunohistochemistry. The percentage of Ki-67 positivity in cancer cells was significantly higher in PSC-CCA than in sporadic CCA (41.3% ± 5.7% vs 25.8% ± 4.1%; P = .038). To assess which cytokines in the inflammatory environment have the potential to stimulate cancer cell proliferation, patient-derived CCA organoids (CCAOs) were exposed to five cytokines related to PSC (Interleukin (IL)-1ß, IL-6, IL-17A, interferon gamma and tumor necrosis factor alpha). Only IL-17A showed a significant stimulatory effect on cell proliferation in CCAOs, increasing organoid size by 45.9% ± 16.4% (P < .01) and proliferation rate by 38% ± 16% (P < .05). IL-17A immunohistochemistry demonstrated that PSC-CCA might express more IL-17A than sporadic CCA. Moreover, correlation analysis in sporadic CCA and PSC-CCA found a significant correlation between IL-17A expression and proliferation. In conclusion, tumor cell proliferation is increased in PSC-CCA cells compared with sporadic CCA cells. IL-17A increases CCA cell proliferation in vitro and may contribute to the high proliferation rate in PSC-CCA in situ. Therefore, IL-17A represents a new potential therapeutic target in (PSC-)CCA, to be tested in future trials.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Cholangitis, Sclerosing , Humans , Cholangitis, Sclerosing/complications , Cholangitis, Sclerosing/pathology , Interleukin-17 , Ki-67 Antigen , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/therapy , Inflammation/complications , Cell Proliferation , Bile Ducts, Intrahepatic/pathology
3.
Cells ; 11(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36429040

ABSTRACT

Monitoring tumor growth dynamics is crucial for understanding cancer. To establish an in vitro method for the continuous assessment of patient-specific tumor growth, tumor organoids were generated from patients with intrahepatic CCA (iCCA). Organoid growth was monitored for 48 h by label-free live brightfield imaging. Growth kinetics were calculated and validated by MTS assay as well as immunohistochemistry of Ki67 to determine proliferation rates. We exposed iCCA organoids (iCCAOs) and non-tumor intrahepatic cholangiocyte organoids (ICOs) to sub-therapeutic concentrations of sorafenib. Monitoring the expansion rate of iCCAOs and ICOs revealed that iCCAO growth was inhibited by sorafenib in a time- and dose-dependent fashion, while ICOs were unaffected. Quantification of the proliferation marker Ki67 confirmed inhibition of iCCAO growth by roughly 50% after 48 h of treatment with 4 µM sorafenib. We established a robust analysis pipeline combining brightfield microscopy and a straightforward image processing approach for the label-free growth monitoring of patient-derived iCCAOs. Combined with bioanalytical validation, this approach is suitable for a fast and efficient high-throughput drug screening in tumor organoids to develop patient-specific systemic treatment options.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Organoids/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Ki-67 Antigen , Cholangiocarcinoma/diagnostic imaging , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology
4.
Mol Med ; 28(1): 74, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764936

ABSTRACT

BACKGROUND: Cholangiocarcinoma is a rare but lethal cancer of the biliary tract. Its first-line treatment is currently restricted to chemotherapy, which provides limited clinical benefit. Kinase inhibitors targeting oncogenic intracellular signaling have changed the treatment paradigm of cancer over the last decades. However, they are yet to be widely applied in cholangiocarcinoma therapy. Cholangiocarcinoma has marked molecular heterogeneity, which complicates the discovery of new treatments and requires patient stratification. Therefore, we investigated whether a commercial kinome profiling platform could predict druggable targets in cholangiocarcinoma. METHODS: Kinase activity in patient-derived cholangiocarcinoma organoids, non-tumorous adjacent tissue-derived and healthy donor-derived intrahepatic cholangiocyte organoids was determined using the PamChip® phosphotyrosine kinase microarray platform. Kinome profiles were compared and correlated with RNA sequencing and (multi-)kinase inhibitor screening of the cholangiocarcinoma organoids. RESULTS: Kinase activity profiles of individual cholangiocarcinoma organoids are different and do not cluster together. However, growth factor signaling (EGFR, PDGFRß) and downstream effectors (MAPK pathway) are more active in cholangiocarcinoma organoids and could provide potential druggable targets. Screening of 31 kinase inhibitors revealed several promising pan-effective inhibitors and compounds that show patient-specific efficacy. Kinase inhibitor sensitivity correlated to the activity of its target kinases for several inhibitors, signifying them as potential predictors of response. Moreover, we identified correlations between drug response and kinases not directly targeted by those drugs. CONCLUSIONS: In conclusion, kinome profiling is a feasible method to identify druggable targets for cholangiocarcinoma. Future studies should confirm the potential of kinase activity profiles as biomarkers for patient stratification and precision medicine.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Cholangiocarcinoma/drug therapy , Humans , Organoids , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
5.
Br J Cancer ; 127(4): 649-660, 2022 09.
Article in English | MEDLINE | ID: mdl-35597867

ABSTRACT

BACKGROUND: Immunotherapy with immune checkpoint inhibitors (ICIs) is being explored to improve cholangiocarcinoma (CCA) therapy. However, it remains difficult to predict which ICI will be effective for individual patients. Therefore, the aim of this study is to develop a co-culture method with patient-derived CCA organoids and immune cells, which could represent anti-cancer immunity in vitro. METHODS: CCA organoids were co-cultured with peripheral blood mononuclear cells or T cells. Flow cytometry, time-lapse confocal imaging for apoptosis, and quantification of cytokeratin 19 fragment (CYFRA) release were applied to analyse organoid and immune cell behaviour. CCA organoids were also cultured in immune cell-conditioned media to analyse the effect of soluble factors. RESULTS: The co-culture system demonstrated an effective anti-tumour organoid immune response by a decrease in live organoid cells and an increase in apoptosis and CYFRA release. Interpatient heterogeneity was observed. The cytotoxic effects could be mediated by direct cell-cell contact and by release of soluble factors, although soluble factors only decreased viability in one organoid line. CONCLUSIONS: In this proof-of-concept study, a novel CCA organoid and immune cell co-culture method was established. This can be the first step towards personalised immunotherapy for CCA by predicting which ICIs are most effective for individual patients.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Ducts, Intrahepatic/pathology , Humans , Leukocytes, Mononuclear/metabolism , Organoids , T-Lymphocytes/pathology
6.
Clin Transl Med ; 11(12): e566, 2021 12.
Article in English | MEDLINE | ID: mdl-34954911

ABSTRACT

The well-established 3D organoid culture method enabled efficient expansion of cholangiocyte-like cells from intrahepatic (IHBD) and extrahepatic bile duct (EHBD) tissue biopsies. The extensive expansion capacity of these organoids enables various applications, from cholangiocyte disease modelling to bile duct tissue engineering. Recent research demonstrated the feasibility of culturing cholangiocyte organoids from bile, which was minimal-invasive collected via endoscopic retrograde pancreaticography (ERCP). However, a detailed analysis of these bile cholangiocyte organoids (BCOs) and the cellular region of origin was not yet demonstrated. In this study, we characterize BCOs and mirror them to the already established organoids initiated from IHBD- and EHBD-tissue. We demonstrate successful organoid-initiation from extrahepatic bile collected from gallbladder after resection and by ERCP or percutaneous transhepatic cholangiopathy from a variety of patients. BCOs initiated from these three sources of bile all show features similar to in vivo cholangiocytes. The regional-specific characteristics of the BCOs are reflected by the exclusive expression of regional common bile duct genes (HOXB2 and HOXB3) by ERCP-derived BCOs and gallbladder-derived BCOs expressing gallbladder-specific genes. Moreover, BCOs have limited hepatocyte-fate differentiation potential compared to intrahepatic cholangiocyte organoids. These results indicate that organoid-initiating cells in bile are likely of local (extrahepatic) origin and are not of intrahepatic origin. Regarding the functionality of organoid initiating cells in bile, we demonstrate that BCOs efficiently repopulate decellularized EHBD scaffolds and restore the monolayer of cholangiocyte-like cells in vitro. Bile samples obtained through minimally invasive procedures provide a safe and effective alternative source of cholangiocyte organoids. The shedding of (organoid-initiating) cholangiocytes in bile provides a convenient source of organoids for regenerative medicine.


Subject(s)
Bile Acids and Salts/genetics , Bile Ducts/chemistry , Organoids/chemistry , Phenotype , Adolescent , Adult , Aged , Bile Ducts/physiopathology , Female , Humans , Male , Middle Aged , Organoids/metabolism
7.
Commun Biol ; 4(1): 1301, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795391

ABSTRACT

Inflammatory liver disease increases the risk of developing primary liver cancer. The mechanism through which liver disease induces tumorigenesis remains unclear, but is thought to occur via increased mutagenesis. Here, we performed whole-genome sequencing on clonally expanded single liver stem cells cultured as intrahepatic cholangiocyte organoids (ICOs) from patients with alcoholic cirrhosis, non-alcoholic steatohepatitis (NASH), and primary sclerosing cholangitis (PSC). Surprisingly, we find that these precancerous liver disease conditions do not result in a detectable increased accumulation of mutations, nor altered mutation types in individual liver stem cells. This finding contrasts with the mutational load and typical mutational signatures reported for liver tumors, and argues against the hypothesis that liver disease drives tumorigenesis via a direct mechanism of induced mutagenesis. Disease conditions in the liver may thus act through indirect mechanisms to drive the transition from healthy to cancerous cells, such as changes to the microenvironment that favor the outgrowth of precancerous cells.


Subject(s)
Cholangitis, Sclerosing/genetics , Liver Cirrhosis, Alcoholic/genetics , Liver Diseases/genetics , Mutagenesis , Non-alcoholic Fatty Liver Disease/genetics , Precancerous Conditions/genetics , Stem Cells/metabolism , Humans , Liver/physiology , Organoids/metabolism
8.
Cell Mol Gastroenterol Hepatol ; 11(2): 407-431, 2021.
Article in English | MEDLINE | ID: mdl-32932015

ABSTRACT

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play a key role in the cancer process, but the research progress is hampered by the paucity of preclinical models that are essential for mechanistic dissection of cancer cell-CAF interactions. Here, we aimed to establish 3-dimensional (3D) organotypic co-cultures of primary liver tumor-derived organoids with CAFs, and to understand their interactions and the response to treatment. METHODS: Liver tumor organoids and CAFs were cultured from murine and human primary liver tumors. 3D co-culture models of tumor organoids with CAFs and Transwell culture systems were established in vitro. A xenograft model was used to investigate the cell-cell interactions in vivo. Gene expression analysis of CAF markers in our hepatocellular carcinoma cohort and an online liver cancer database indicated the clinical relevance of CAFs. RESULTS: To functionally investigate the interactions of liver cancer cells with CAFs, we successfully established murine and human 3D co-culture models of liver tumor organoids with CAFs. CAFs promoted tumor organoid growth in co-culture with direct cell-cell contact and in a Transwell system via paracrine signaling. Vice versa, cancer cells secrete paracrine factors regulating CAF physiology. Co-transplantation of CAFs with liver tumor organoids of mouse or human origin promoted tumor growth in xenograft models. Moreover, tumor organoids conferred resistance to clinically used anticancer drugs including sorafenib, regorafenib, and 5-fluorouracil in the presence of CAFs, or the conditioned medium of CAFs. CONCLUSIONS: We successfully established murine and human 3D co-culture models and have shown robust effects of CAFs in liver cancer nurturing and treatment resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Organoids/pathology , Animals , Antineoplastic Agents/therapeutic use , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Hepatocellular/pathology , Coculture Techniques , Culture Media, Conditioned/metabolism , Diethylnitrosamine/administration & dosage , Diethylnitrosamine/toxicity , Drug Resistance, Neoplasm , Humans , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Mice , Organoids/drug effects , Paracrine Communication , Primary Cell Culture , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays
9.
Cells ; 9(1)2020 01 04.
Article in English | MEDLINE | ID: mdl-31947947

ABSTRACT

Metabolic reprogramming universally occurs in cancer. Mitochondria act as the hubs of bioenergetics and metabolism. The morphodynamics of mitochondria, comprised of fusion and fission processes, are closely associated with mitochondrial functions and are often dysregulated in cancer. In this study, we aim to investigate the mitochondrial morphodynamics and its functional consequences in human liver cancer. We observed excessive activation of mitochondrial fusion in tumor tissues from hepatocellular carcinoma (HCC) patients and in vitro cultured tumor organoids from cholangiocarcinoma (CCA). The knockdown of the fusion regulator genes, OPA1 (Optic atrophy 1) or MFN1 (Mitofusin 1), inhibited the fusion process in HCC cell lines and CCA tumor organoids. This resulted in inhibition of cell growth in vitro and tumor formation in vivo, after tumor cell engraftment in mice. This inhibitory effect is associated with the induction of cell apoptosis, but not related to cell cycle arrest. Genome-wide transcriptomic profiling revealed that the inhibition of fusion predominately affected cellular metabolic pathways. This was further confirmed by the blocking of mitochondrial fusion which attenuated oxygen consumption and cellular ATP production of tumor cells. In conclusion, increased mitochondrial fusion in liver cancer alters metabolism and fuels tumor cell growth.


Subject(s)
GTP Phosphohydrolases/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/metabolism , Adult , Aged , Animals , Cell Line, Tumor , Cell Proliferation , Cholangiocarcinoma/pathology , Female , Gene Silencing , HEK293 Cells , Humans , Male , Mice, Nude , Middle Aged , Organoids/pathology , Oxygen Consumption
10.
Hepatology ; 72(1): 257-270, 2020 07.
Article in English | MEDLINE | ID: mdl-31715015

ABSTRACT

BACKGROUND AND AIMS: The gap between patients on transplant waiting lists and available donor organs is steadily increasing. Human organoids derived from leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5)-positive adult stem cells represent an exciting new cell source for liver regeneration; however, culturing large numbers of organoids with current protocols is tedious and the level of hepatic differentiation is limited. APPROACH AND RESULTS: Here, we established a method for the expansion of large quantities of human liver organoids in spinner flasks. Due to improved oxygenation in the spinner flasks, organoids rapidly proliferated and reached an average 40-fold cell expansion after 2 weeks, compared with 6-fold expansion in static cultures. The organoids repopulated decellularized liver discs and formed liver-like tissue. After differentiation in spinner flasks, mature hepatocyte markers were highly up-regulated compared with static organoid cultures, and cytochrome p450 activity reached levels equivalent to hepatocytes. CONCLUSIONS: We established a highly efficient method for culturing large numbers of LGR5-positive stem cells in the form of organoids, which paves the way for the application of organoids for tissue engineering and liver transplantation.


Subject(s)
Cell Culture Techniques , Cell Proliferation , Hepatocytes/cytology , Liver Regeneration , Liver Transplantation , Organoids/cytology , Receptors, G-Protein-Coupled/biosynthesis , Stem Cells/metabolism , Tissue Engineering , Cell Differentiation , Cells, Cultured , Humans
11.
Liver Int ; 39 Suppl 1: 79-97, 2019 05.
Article in English | MEDLINE | ID: mdl-30851232

ABSTRACT

Human cholangiocarcinoma (CCA) is an aggressive tumour entity arising from the biliary tree, whose molecular pathogenesis remains largely undeciphered. Over the last decade, the advent of high-throughput and cell-based techniques has significantly increased our knowledge on the molecular mechanisms underlying this disease while, at the same time, unravelling CCA complexity. In particular, it becomes clear that CCA displays pronounced inter- and intratumoural heterogeneity, which is presumably the consequence of the interplay between distinct tissues and cells of origin, the underlying diseases, and the associated molecular alterations. To better characterize these events and to design novel and more effective therapeutic strategies, a number of CCA experimental and preclinical models have been developed and are currently generated. This review summarizes the current knowledge and understanding of these models, critically underlining their translational usefulness and limitations. Furthermore, this review aims to provide a comprehensive overview on cells of origin, cancers stem cells and their dynamic interplay within CCA tissue.


Subject(s)
Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , Disease Models, Animal , Neoplastic Stem Cells/pathology , Animals , Disease Progression , Humans , Tumor Microenvironment
12.
Nat Med ; 23(12): 1424-1435, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29131160

ABSTRACT

Human liver cancer research currently lacks in vitro models that can faithfully recapitulate the pathophysiology of the original tumor. We recently described a novel, near-physiological organoid culture system, wherein primary human healthy liver cells form long-term expanding organoids that retain liver tissue function and genetic stability. Here we extend this culture system to the propagation of primary liver cancer (PLC) organoids from three of the most common PLC subtypes: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC) and combined HCC/CC (CHC) tumors. PLC-derived organoid cultures preserve the histological architecture, gene expression and genomic landscape of the original tumor, allowing for discrimination between different tumor tissues and subtypes, even after long-term expansion in culture in the same medium conditions. Xenograft studies demonstrate that the tumorogenic potential, histological features and metastatic properties of PLC-derived organoids are preserved in vivo. PLC-derived organoids are amenable for biomarker identification and drug-screening testing and led to the identification of the ERK inhibitor SCH772984 as a potential therapeutic agent for primary liver cancer. We thus demonstrate the wide-ranging biomedical utilities of PLC-derived organoid models in furthering the understanding of liver cancer biology and in developing personalized-medicine approaches for the disease.


Subject(s)
Bile Duct Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Cholangiocarcinoma/pathology , Drug Screening Assays, Antitumor/methods , Liver Neoplasms/pathology , Organoids/pathology , Primary Cell Culture/methods , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/therapeutic use , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Proliferation , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Precision Medicine , Transcriptome , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Best Pract Res Clin Gastroenterol ; 31(2): 151-159, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28624103

ABSTRACT

Due to the complex function and structure of the liver, resourceful solutions for treating end-stage liver disease are required. Currently, liver transplantation is the only curative therapeutic option. However, due to a worldwide donor shortage, researchers have been looking in other fields for alternative sources of transplantable liver tissue. Recent advances in our understanding of liver physiology, stem cell and matrix biology, have accelerated tissue engineering research. Most notable is the discovery of a culture system to grow liver-like organoids from human hepatic stem cells. The extensive expansion capacity of these stem cells has contributed greatly to the availability of hepatocyte-like cells for tissue engineering. In addition, new techniques are explored to obtain biological liver scaffolds from full size donor organs. This review summarizes these state-of-art techniques which may lay the groundwork towards re-creating transplantable tissue from autologous or allogenic stem cells in the coming decade.


Subject(s)
Bioengineering/methods , Hepatocytes/transplantation , Liver Transplantation/methods , Organoids , Tissue Engineering/methods , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...