Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Sci Rep ; 14(1): 12868, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834690

ABSTRACT

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Subject(s)
Cell Proliferation , Leukemia, Myeloid, Acute , ras GTPase-Activating Proteins , Humans , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Computer Simulation , Antineoplastic Agents/pharmacology , Protein Domains , Animals , Proteomics/methods
3.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798540

ABSTRACT

Signals from the microenvironment are known to be critical for development, sustaining adult stem cells, and for oncogenic progression. While candidate niche-driven signals that can promote cancer progression have been identified1-6, concerted efforts to comprehensively map microenvironmental ligands for cancer stem cell specific surface receptors have been lacking. Here, we use temporal single cell RNA-sequencing to identify molecular cues from the bone marrow stromal niche that engage leukemia stem cells (LSC) during oncogenic progression. We integrate these data with our RNA-seq analysis of human LSCs from distinct aggressive myeloid cancer subtypes and our CRISPR based in vivo LSC dependency map7 to develop a temporal receptor-ligand interactome essential for disease progression. These analyses identify the taurine transporter (TauT)-taurine axis as a critical dependency of myeloid malignancies. We show that taurine production is restricted to the osteolineage population during cancer initiation and expansion. Inhibiting taurine synthesis in osteolineage cells impairs LSC growth and survival. Our experiments with the TauT genetic loss of function murine model indicate that its loss significantly impairs the progression of aggressive myeloid leukemias in vivo by downregulating glycolysis. Further, TauT inhibition using a small molecule strongly impairs the growth and survival of patient derived myeloid leukemia cells. Finally, we show that TauT inhibition can synergize with the clinically approved oxidative phosphorylation inhibitor venetoclax8, 9 to block the growth of primary human leukemia cells. Given that aggressive myeloid leukemias continue to be refractory to current therapies and have poor prognosis, our work indicates targeting the taurine transporter may be of therapeutic significance. Collectively, our data establishes a temporal landscape of stromal signals during cancer progression and identifies taurine-taurine transporter signaling as an important new regulator of myeloid malignancies.

5.
Exp Gerontol ; 187: 112364, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266886

ABSTRACT

Tumor necrosis factor (TNF)α is a major regulator of inflammation. However, the epigenetic regulation of TNFα in the context of an exercise intervention among older adults with cancer is understudied. In this exploratory analysis, we used data from a single-arm mobile health (mHealth) exercise intervention among older adults with myeloid malignancies to 1) assess changes in TNFα promoter methylation, TNFα mRNA expression, serum TNFα and other related-cytokine levels after intervention; and 2) assess correlations between blood markers and exercise levels. Twenty patients were included. From baseline to post-intervention, there was no statistical changes in TNFα promoter methylation status at seven CpG sites, TNFα mRNA expression, and serum TNFα levels. Effect sizes, however, were moderate to large for several CpG sites (-120, -147, -162, and -164; Cohen's d = 0.44-0.75). Median serum TNFα sR1 levels increased (83.63, IQR 130.58, p = 0.06; Cohen's d = 0.18) but not the other cytokines. Increases in average daily steps were correlated with increases in TNFα promoter methylation at CpG sites -147 (r = 0.48; p = 0.06) and -164 (r = 0.51; p = 0.04). Resistance training minutes were negatively correlated with TNFα promoter methylation at CpG site -120 (r = -0.62; p = 0.02). All effect sizes were moderate to large. In conclusion, after a mHealth exercise intervention, we demonstrated changes with moderate to large effect sizes in several CpG sites in the TNFα promoter region. Exercise levels were correlated with increases in TNFα promoter methylation. Larger exercise trials are needed to better evaluate TNFα regulation to inform interventions to augment TNFα regulation in order to improve outcomes in older adults with cancer.


Subject(s)
Cytokines , Neoplasms , Humans , Aged , Cytokines/genetics , Cytokines/metabolism , Tumor Necrosis Factor-alpha , DNA Methylation , Epigenesis, Genetic , Neoplasms/genetics , RNA, Messenger/genetics
7.
Blood Adv ; 8(2): 378-387, 2024 01 23.
Article in English | MEDLINE | ID: mdl-37871300

ABSTRACT

ABSTRACT: Many patients with chronic lymphocytic leukemia (CLL) will develop treatment resistance to Bruton tyrosine kinase (BTK) inhibitors. Phosphatidylinositol-3-kinase (PI3K) inhibitors, including umbralisib, have significant clinical activity in relapsed/refractory CLL, but prolonged exposure is associated with potential toxicities. Owing to the synergistic antitumor effects of combined PI3K and BCL-2 inhibition, we sought to explore the feasibility of response-adapted, time-limited therapy to optimize disease control while mitigating the risks of prolonged treatment. We conducted a phase 1/2 clinical trial to determine the safety and efficacy of venetoclax in combination with umbralisib and the anti-CD20 monoclonal antibody, ublituximab, (U2-VeN) in patients with relapsed/refractory CLL (N = 46) and Richter transformation (N = 5). After 12 cycles, treatment was stopped for patients with CLL who achieved undetectable minimal residual disease (uMRD). Adverse events of special interest included diarrhea in 50% of patients (11% grade 3/4), and aspartate aminotransferase and/or alanine aminotransferase elevation in 15 patients (33%), with 3 (7%) grade 3/4. There were no cases of tumor lysis syndrome related to venetoclax, with outpatient initiation in 96% of patients. The intent-to-treat overall response rate for CLL was 98% with best response of 100% in evaluable patients (42% complete responses). The end-of-treatment rate of uMRD at 10-4 in bone marrow was 77% (30/39), including a 71% uMRD rate among 14 patients refractory to prior BTK inhibitor. Time-limited venetoclax and U2 is safe and highly effective combination therapy for patients with relapsed/refractory CLL including those who have been previously treated with covalent BTK inhibitors. This trial was registered on www.clinicaltrials.gov as #NCT03379051.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Heterocyclic Compounds, 4 or More Rings , Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, B-Cell , Sulfonamides , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Antibodies, Monoclonal/therapeutic use , Lymphoma, B-Cell/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Phosphatidylinositol 3-Kinases/therapeutic use
8.
Blood Adv ; 7(24): 7597-7607, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38088668

ABSTRACT

ABSTRACT: Older patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) feel shocked and bewildered when diagnosed. Serious illness conversations (SICs) may increase disease understanding and preparations for the future. However, SICs often happen late, in part because of clinician-perceived patient discomfort. Telehealth may promote patient comfort by allowing SICs to take place at home. This study assesses the feasibility and usability of a telehealth-delivered Serious Illness Care Program (SICP) for older adults with AML and MDS. We conducted a single-arm pilot study including 20 older adults with AML and MDS. Feasibility was measured using retention rate, with >80% considered feasible. Usability was measured using telehealth usability questionnaire (TUQ; range, 1-7): >5 considered usable. We collected other outcomes including acceptability and disease understanding and conducted post-visit qualitative interviews to elicit feedback. Hypothesis testing was performed at α = 0.10 owing to the pilot nature and small sample size. Retention rate was 95% (19/20); mean TUQ scores were 5.9 (standard deviation [SD], 0.9) and 5.9 (SD, 1.1) for patients and caregivers, respectively. We found the SICP to be acceptable. The majority of patients found the SICP to be very or extremely worthwhile (88.2%; 15/17), and reported it increased closeness with their clinician (75.0%; 12/16). After their visit, patient estimates of curability, and overall life expectancy aligned more closely with those of their clinicians. In qualitative interviews, most patients said that they would recommend this program to others (89.5%, 17/19). This study demonstrated that delivery of the telehealth SICP to older patients with AML and MDS is feasible, usable, and acceptable. This trial is registered at www.clinicaltrials.gov as #NCT04745676.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Telemedicine , Humans , Aged , Pilot Projects , Critical Care , Critical Illness , Myelodysplastic Syndromes/therapy , Hematologic Neoplasms/therapy
9.
Leuk Lymphoma ; 64(12): 1992-2001, 2023 12.
Article in English | MEDLINE | ID: mdl-37571998

ABSTRACT

Tamibarotene-based therapy is a novel targeted approach for the treatment of relapsed/refractory (R/R) acute myeloid leukemia (AML) with retinoic acid receptor alpha (RARA) gene overexpression. Approximately, 50% of higher-risk myelodysplastic syndrome (MDS) patients and approximately 30% of AML patients are positive for RARA overexpression using a blood-based biomarker test that measures RARA expression in peripheral blasts. A phase 2 study investigating the activity of tamibarotene in patients with RARA overexpression was conducted in patients with AML and MDS (NCT02807558). In 28 patients with R/R AML and RARA overexpression treated with tamibarotene in combination with azacitidine, the median overall survival was 5.9 months. In 21 response-evaluable patients, the complete remission/complete remission with incomplete hematologic recovery (CR/CRi) rate was 19%, and median time to initial CR/CRi was 1.2 months. The favorable safety profile and preliminary clinical activity support the development of combination therapies with tamibarotene in myeloid malignancies with RARA overexpression.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Azacitidine/therapeutic use , Myelodysplastic Syndromes/genetics , Retinoic Acid Receptor alpha , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects
10.
Cancers (Basel) ; 15(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37444542

ABSTRACT

Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.

11.
Cell Death Dis ; 14(7): 428, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452070

ABSTRACT

The efficient clearance of dead and dying cells, efferocytosis, is critical to maintain tissue homeostasis. In the bone marrow microenvironment (BMME), this role is primarily fulfilled by professional bone marrow macrophages, but recent work has shown that mesenchymal stromal cells (MSCs) act as a non-professional phagocyte within the BMME. However, little is known about the mechanism and impact of efferocytosis on MSCs and on their function. To investigate, we performed flow cytometric analysis of neutrophil uptake by ST2 cells, a murine bone marrow-derived stromal cell line, and in murine primary bone marrow-derived stromal cells. Transcriptional analysis showed that MSCs possess the necessary receptors and internal processing machinery to conduct efferocytosis, with Axl and Tyro3 serving as the main receptors, while MerTK was not expressed. Moreover, the expression of these receptors was modulated by efferocytic behavior, regardless of apoptotic target. MSCs derived from human bone marrow also demonstrated efferocytic behavior, showing that MSC efferocytosis is conserved. In all MSCs, efferocytosis impaired osteoblastic differentiation. Transcriptional analysis and functional assays identified downregulation in MSC mitochondrial function upon efferocytosis. Experimentally, efferocytosis induced mitochondrial fission in MSCs. Pharmacologic inhibition of mitochondrial fission in MSCs not only decreased efferocytic activity but also rescued osteoblastic differentiation, demonstrating that efferocytosis-mediated mitochondrial remodeling plays a critical role in regulating MSC differentiation. This work describes a novel function of MSCs as non-professional phagocytes within the BMME and demonstrates that efferocytosis by MSCs plays a key role in directing mitochondrial remodeling and MSC differentiation. Efferocytosis by MSCs may therefore be a novel mechanism of dysfunction and senescence. Since our data in human MSCs show that MSC efferocytosis is conserved, the consequences of MSC efferocytosis may impact the behavior of these cells in the human skeleton, including bone marrow remodeling and bone loss in the setting of aging, cancer and other diseases.


Subject(s)
Bone Marrow , Mesenchymal Stem Cells , Humans , Mice , Animals , Bone Marrow/metabolism , Cell Differentiation , Phagocytosis , Mitochondria/metabolism , Mesenchymal Stem Cells/metabolism , Bone Marrow Cells/metabolism
12.
Stem Cells ; 41(9): 823-836, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37348128

ABSTRACT

The study of marrow-resident mesodermal progenitors can provide important insight into their role in influencing normal and aberrant hematopoiesis as occurs in acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). In addition, the chemokine competency of these cells provides links to the inflammatory milieu of the marrow microenvironment with additional implications for normal and malignant hematopoiesis. While in vivo studies have elucidated the structure and function of the marrow niche in murine genetic models, corollary human studies have not been feasible, and thus the use of culture-adapted mesodermal cells has provided insights into the role these rare endogenous niche cells play in physiologic, malignant, and inflammatory states. This review focuses on culture-adapted human mesenchymal stem/stromal cells (MSCs) as they have been utilized in understanding their influence in AML and MDS as well as on their chemokine-mediated responses to myeloid malignancies, injury, and inflammation. Such studies have intrinsic limitations but have provided mechanistic insights and clues regarding novel druggable targets.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Myelodysplastic Syndromes , Humans , Animals , Mice , Bone Marrow/pathology , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/genetics , Hematopoiesis , Tumor Microenvironment
13.
Blood Adv ; 7(15): 3993-4002, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37134306

ABSTRACT

To develop a prognostic model for patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT) for myelofibrosis (MF), we examined the data of 623 patients undergoing allo-HCT between 2000 and 2016 in the United States (the Center for International Blood and Marrow Transplant Research [CIBMTR] cohort). A Cox multivariable model was used to identify factors prognostic of mortality. A weighted score using these factors was assigned to patients who received transplantation in Europe (the European Bone Marrow Transplant [EBMT] cohort; n = 623). Patient age >50 years (hazard ratio [HR], 1.39; 95% confidence interval [CI], 0.98-1.96), and HLA-matched unrelated donor (HR, 1.29; 95% CI, 0.98-1.7) were associated with an increased hazard of death and were assigned 1 point. Hemoglobin levels <100 g/L at time of transplantation (HR, 1.63; 95% CI, 1.2-2.19) and a mismatched unrelated donor (HR, 1.78; 95% CI, 1.25-2.52) were assigned 2 points. The 3-year overall survival (OS) in patients with a low (1-2 points), intermediate (3-4 points), and high score (5 points) were 69% (95% CI, 61-76), 51% (95% CI, 46-56.4), and 34% (95% CI, 21-49), respectively (P < .001). Increasing score was predictive of increased transplant-related mortality (TRM; P = .0017) but not of relapse (P = .12). The derived score was predictive of OS (P < .001) and TRM (P = .002) but not of relapse (P = .17) in the EBMT cohort as well. The proposed system was prognostic of survival in 2 large cohorts, CIBMTR and EBMT, and can easily be applied by clinicians consulting patients with MF about the transplantation outcomes.


Subject(s)
Hematopoietic Stem Cell Transplantation , Primary Myelofibrosis , Humans , United States , Middle Aged , Prognosis , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/therapy , Transplantation, Homologous , Unrelated Donors , Chronic Disease , Recurrence
14.
J Geriatr Oncol ; 14(5): 101529, 2023 06.
Article in English | MEDLINE | ID: mdl-37244139

ABSTRACT

INTRODUCTION: Acute myeloid leukemia (AML) is associated with poor outcomes and is generally incurable. Therefore, understanding preferences of older adults with AML is critical. We sought to assess whether best-worst scaling (BWS) can be used to capture attributes considered by older adults with AML when making initial treatment decisions and longitudinally, as well as assess changes in health-related quality of life (HRQoL) and decisional regret over time. MATERIALS AND METHODS: In a longitudinal study for adults ≥60 years with newly diagnosed AML, we collected: (1) attributes of treatment most important to patients using BWS, (2) HRQoL using EQ-5D-5L, (3) decisional regret using the Decisional Regret Scale, and (4) treatment worthiness using the "Was it worth it?" questionnaire. Data was collected at baseline and over six months. A hierarchical Bayes model was used to allocate percentages out of 100%. Due to small sample size, hypothesis testing was performed at α = 0.10 (2-tailed). We analyzed how these measures differed by treatment choice (intensive vs. lower intensity treatment). RESULTS: Mean age of patients was 76 years (n = 15). At baseline, the most important attributes of treatment to patients were response to treatment (i.e., chance that the cancer will respond to treatment; 20.9%). Compared to those who received lower intensity treatment (n = 7) or best supportive care (n = 2), those who received intensive treatment (n = 6) generally ranked "alive one year or more after treatment" (p = 0.03) with higher importance and ranked "daily activities" (p = 0.01) and "location of treatment" (p = 0.01) with less importance. Overall, HRQoL scores were high. Decisional regret was mild overall and lower for patients who chose intensive treatment (p = 0.06). DISCUSSION: We demonstrated that BWS can be used to assess the importance of various treatment attributes considered by older adults with AML when making initial treatment decisions and longitudinally throughout treatment. Attributes of treatment important to older patients with AML differed between treatment groups and changed over time. Interventions are needed to re-assess patient priorities throughout treatment to ensure care aligns with patient preferences.


Subject(s)
Decision Making , Leukemia, Myeloid, Acute , Humans , Aged , Longitudinal Studies , Patient Preference , Quality of Life , Bayes Theorem , Emotions , Leukemia, Myeloid, Acute/therapy
15.
Eur J Med Res ; 28(1): 180, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37254221

ABSTRACT

BACKGROUND: Older adults with myeloid malignancies are susceptible to treatment-related toxicities. Accelerated DNAm age, or the difference between DNA methylation (DNAm) age and chronological age, may be used as a biomarker of biological age to predict individuals at risk. In addition, cancer treatment can also lead to accelerated DNAm age. Exercise is a promising intervention to reduce or prevent functional, psychological, and cognitive impairments in older patients with myeloid malignancies, yet there is little evidence of the effects of exercise on DNAm age. We explored (1) the associations of accelerated DNAm age with physical, psychological, and cognitive functions at baseline; (2) changes in DNAm age from baseline to post-intervention; and (3) the associations of changes in accelerated DNAm age with changes in functions from baseline to post-intervention. METHODS: We enrolled older patients with myeloid malignancies to a single-arm pilot study testing a mobile health (mHealth) exercise intervention that combines an exercise program (EXCAP©®) with a mobile application over 2 cycles of chemotherapy (8-12 weeks). Patients completed measures of physical, psychological, and cognitive functions and provided blood samples for analyses of DNAm age at baseline and post-intervention. Paired t-tests or Wilcoxon signed rank tests assessed changes in DNAm ages, and Spearman's correlation assessed the relationships between accelerated ages and functions. RESULTS: We included 20 patients (mean age: 72 years, range 62-80). Accelerated GrimAge, accelerated PhenoAge, and DunedinPACE were stable from baseline to post-intervention. At baseline, DunedinPACE was correlated with worse grip strength (r = -0.41, p = 0.08). From baseline to post-intervention, decreases in accelerated GrimAge (r = -0.50, p = 0.02), accelerated PhenoAge (r = - 0.39, p = 0.09), and DunedinPace (r = - 0.43, p = 0.06) were correlated with increases in distance walked on 6-min walk test. Decreases in accelerated GrimAge (r = - 0.49, p = 0.03), accelerated PhenoAge (r = - 0.40, p = 0.08), and DunedinPace (r = - 0.41, p = 0.07) were correlated with increases in in grip strength. CONCLUSIONS: Among older adults with myeloid malignancies receiving chemotherapy, GrimAge and PhenoAge on average are stable after a mHealth exercise intervention. Decreases in accelerated GrimAge, accelerated PhenoAge, and DunedinPACE over 8-12 weeks of exercise were correlated with increased physical performance. Future trials assessing the effects of exercise on treatment-related toxicities should evaluate DNAm age. Trial registration Clinicaltrials.gov identifier: NCT04981821.


Subject(s)
Aging , Neoplasms , Aged , Aged, 80 and over , Humans , Middle Aged , Aging/genetics , DNA Methylation , Epigenesis, Genetic , Neoplasms/genetics , Pilot Projects
16.
Article in English | MEDLINE | ID: mdl-37160316

ABSTRACT

Autologous and allogeneic hematopoietic stem cell transplantation (HSCT) has revolutionized the therapy of hematolymphoid malignancies. Yet, how to best detect or predict the emergence of HSCT-related complications remain unresolved. Here, we describe a case of donor-derived, transient Alpha Beta (αß) T-cell large granular clonal lymphocytosis and cytopenia that emerged post-HSCT in a patient with a history of gamma delta (γδ) T-cell large granular lymphocytic leukemia (T-LGLL). Clonal unrelatedness of post-transplant T-LGL lymphocytosis to the patient's pretransplant T-LGLL was first identified by T-cell receptor (TCR) PCR showing different sized fragments of rearranged gamma chains, in addition to shift from γδ to αß TCR expression by flow cytometry analyses. Donor-derivation of the patient's post-transplant clonal lymphocytosis was confirmed by serial chimerism analyses of recipient's blood specimens demonstrating 100% donor DNA. Moreover, oncogenic DNMT3A and RUNX1 mutations were detected by next-generation sequencing (NGS) only in post-transplant specimens. Intriguingly, despite continued increase in DNMT3A and RUNX1 mutation load, the patient's clonal lymphocytosis and anemia eventually largely resolved; yet, the observed mutation profile with persistent thrombocytopenia indicated secondary clonal cytopenia of undetermined significance (CCUS) in the absence of overt morphologic evidence of myeloid neoplasm in the marrow. This case illustrates the utility of longitudinal chimerism analysis and NGS testing combined with flow cytometric immunophenotyping to evaluate emerging donor-derived hematolymphoid processes and to properly interpret partial functional engraftment. It may also support the notion that driver mutation-induced microenvironmental changes may paradoxically contribute to reestablishing tissue homeostasis.


Subject(s)
Leukemia, Large Granular Lymphocytic , Lymphocytosis , Humans , Leukemia, Large Granular Lymphocytic/genetics , Lymphocytosis/genetics , Core Binding Factor Alpha 2 Subunit , Clonal Hematopoiesis , DNA Modification Methylases , T-Lymphocytes
17.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37066307

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) within the bone marrow microenvironment (BMME) support normal hematopoietic stem and progenitor cells (HSPCs). However, the heterogeneity of human MSCs has limited the understanding of their contribution to clonal dynamics and evolution to myelodysplastic syndromes (MDS). We combined three MSC cell surface markers, CD271, VCAM-1 (Vascular Cell Adhesion Molecule-1) and CD146, to isolate distinct subsets of human MSCs from bone marrow aspirates of healthy controls (Control BM). Based on transcriptional and functional analysis, CD271+CD106+CD146+ (NGFR+/VCAM1+/MCAM+/Lin-; NVML) cells display stem cell characteristics, are compatible with murine BM-derived Leptin receptor positive MSCs and provide superior support for normal HSPCs. MSC subsets from 17 patients with MDS demonstrated shared transcriptional changes in spite of mutational heterogeneity in the MDS clones, with loss of preferential support of normal HSPCs by MDS-derived NVML cells. Our data provide a new approach to dissect microenvironment-dependent mechanisms regulating clonal dynamics and progression of MDS.

18.
Bone Res ; 11(1): 15, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918531

ABSTRACT

Prior research establishing that bone interacts in coordination with the bone marrow microenvironment (BMME) to regulate hematopoietic homeostasis was largely based on analyses of individual bone-associated cell populations. Recent advances in intravital imaging has suggested that the expansion of hematopoietic stem cells (HSCs) and acute myeloid leukemia cells is restricted to bone marrow microdomains during a distinct stage of bone remodeling. These findings indicate that dynamic bone remodeling likely imposes additional heterogeneity within the BMME to yield differential clonal responses. A holistic understanding of the role of bone remodeling in regulating the stem cell niche and how these interactions are altered in age-related hematological malignancies will be critical to the development of novel interventions. To advance this understanding, herein, we provide a synopsis of the cellular and molecular constituents that participate in bone turnover and their known connections to the hematopoietic compartment. Specifically, we elaborate on the coupling between bone remodeling and the BMME in homeostasis and age-related hematological malignancies and after treatment with bone-targeting approaches. We then discuss unresolved questions and ambiguities that remain in the field.

19.
Cancers (Basel) ; 15(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36831522

ABSTRACT

Acute myeloid leukemia (AML) represents 80% of acute leukemia in adults and is characterized by clonal expansion of hematopoietic stem cells secondary to genomic mutations, rendering a selective growth advantage to the mutant clones. NPM1mut is found in around 30% of AML and clinically presents with leukocytosis, high blast percentage and extramedullary involvement. Considered as a "gate-keeper" mutation, NPM1mut appears to be a "first hit" in the process of leukemogenesis and development of overt leukemia. Commonly associated with other mutations (e.g., FLT 3, DNMT3A, TET2, SF3B1), NPM1 mutation in AML has an important role in diagnosis, prognosis, treatment and post-treatment monitoring. Several novel therapies targeting NPM1 are being developed in various clinical phases with demonstration of efficacy. In this review, we summarize the pathophysiology of the NPM1 gene mutation in AML, clinical implications and the novel targeted therapies to date.

20.
AIDS Res Hum Retroviruses ; 39(7): 350-366, 2023 07.
Article in English | MEDLINE | ID: mdl-36762930

ABSTRACT

The most potent and broad HIV envelope (Env)-specific antibodies often when reverted to their inferred germline versions representing the naive B cell receptor, fail to bind Env, suggesting that the initial responding B cell population not only exclusively comprises a naive population, but also a pre-existing cross-reactive antigen-experienced B cell pool that expands following Env exposure. Previously we isolated gp120-reactive monoclonal antibodies (mAbs) from participants in HVTN 105, an HIV vaccine trial. Using deep sequencing, focused on immunoglobulin G (IgG), IgA, and IgM, VH-lineage tracking, we identified four of these mAb lineages in pre-immune peripheral blood. We also looked through the ∼7 month postvaccination bone marrow, and interestingly, several of these lineages that were found in prevaccination blood were still persistent in the postvaccination bone marrow, including the CD138+ long-lived plasma cell compartment. The majority of the pre-immune lineage members included IgM, however, IgG and IgA members were also prevalent and exhibited somatic hypermutation. These results suggest that vaccine-induced gp120-specific antibody lineages originate from both naive and cross-reactive memory B cells. ClinicalTrials.gov NCT02207920.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Humans , HIV Infections/prevention & control , HIV Antibodies , Vaccination , HIV Envelope Protein gp120 , Immunoglobulin G , Antibodies, Monoclonal , Immunoglobulin A , Immunoglobulin M , Antibodies, Neutralizing
SELECTION OF CITATIONS
SEARCH DETAIL
...