Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Oecologia ; 196(2): 317-329, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33576901

ABSTRACT

Most non-native domesticated plants provide benefits without escaping cultivation, but others have become prominent invaders. A better understanding of how domestication might alter plant traits that influence the ability of species to overcome barriers to invasion could improve invasion risk predictions. We explored how variation in foliar chemistry among cultivars of a widespread invader in the U.S. (Lespedeza cuneata) might influence invasion risk through differences in herbivore interactions and a potential tradeoff with competitive ability. In a no-choice feeding bioassay a generalist herbivore performed better when fed cultivars compared to wild genotypes and native congeners, suggesting domesticated L. cuneata may be more vulnerable to herbivory compared to wild genotypes. However, in a factorial greenhouse experiment, with treatments of herbivory and competition, all cultivars had similar seed and biomass production as the wild genotype. Competition with native species reduced productivity of all L. cuneata types, while experimental herbivory alone did not. We also found far less variation in foliar chemistry among L. cuneata types than expected based on domestication history. While our findings from the bioassay suggest potentially lower invasion risk for cultivars if herbivore populations expand more rapidly when feeding on cultivars, we did not find evidence that cultivars had different responses to herbivory or competition with native species in the greenhouse experiment. Altogether, the findings from our multi-pronged approach for evaluating potential factors underlying invasion success of a domesticated species indicate that domestication has not altered invasion risk of this widespread plant invader.


Subject(s)
Fabaceae , Biomass , Domestication , Herbivory
3.
J Chem Ecol ; 41(12): 1069-79, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26563203

ABSTRACT

Non-native plants introduced to new habitats can have significant ecological impact. In many cases, even though they interact with the same community of potential herbivores as their new native competitors, they regularly receive less damage. Plants produce secondary metabolites in their leaves that serve a range of defensive functions, including resistance to herbivores and pathogens. Abiotic factors such as nutrient availability can influence the expression of defensive traits, with some species exhibiting increased chemical defense in low-nutrient conditions. Plants in the genus Lonicera are known to produce a diverse array of these secondary metabolites, yet non-native Lonicera species sustain lower amounts of herbivore damage than co-occurring native Lonicera species in North America. In this study, we searched for evidence of biochemical novelty in non-native species, and quantified its association with resistance to herbivores. In order to achieve this, we evaluated the phenolic and iridoid glycoside profiles in leaves of native and non-native Lonicera species grown under high and low fertilization treatments in a common garden. We then related these profiles to naturally occurring herbivore damage on whole plants in the garden. Herbivore damage was greater on native Lonicera, and chemical profiles and concentrations of selected putative defense compounds varied by species. Geographic origin was an inconsistent predictor of chemical variation in detected phenolics and iridoid glycosides (IGs). Overall, fertilization did not affect herbivore damage or measures of phenolics or IGs, but there were some fertilization effects within species. While we cannot conclude that non-natives were more chemically novel than native Lonicera species, chemical defense profiles and concentrations of specific compounds varied by species. Reduced attraction or deterrence of oviposition, specific direct resistance traits, or a combination of both may contribute to reduced herbivory and competitive advantages for non-native Lonicera in North America.


Subject(s)
Food Chain , Herbivory , Lonicera/physiology , Secondary Metabolism , Introduced Species , Iridoid Glycosides/metabolism , Ohio , Phenols/metabolism , Plant Leaves/metabolism
4.
Ann Bot ; 112(4): 741-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23589632

ABSTRACT

BACKGROUND AND AIMS: Tolerance and defence against herbivory are among the many mechanisms attributed to the success of invasive plants in their novel ranges. Because tolerance and defence against herbivory differ with the ontogeny of a plant, the effects of herbivore damage on plant fitness vary with ontogenetic stage and are compounded throughout a plant's lifetime. Environmental stresses such as light and nutrient limitations can further influence the response of the plant. Much is known about the response of plants in the seedling and reproductive adult stages, but less attention has been given to the pre-reproductive juvenile stage. METHODS: Juvenile plants of the North American invasive Lonicera maackii were exposed to simulated herbivory under high and low light and nitrogen availability and growth, allocation patterns and foliar defensive chemistry were measured. In a second experiment, complete nutrient availability and damage type (generalist caterpillar or simulated) were manipulated. KEY RESULTS: Juvenile plants receiving 50 % defoliation had lower total biomass and a higher root^:/hoot ratio than controls for all treatment combinations except low nitrogen/low light. Low light and defoliation increased root^:/hoot ratio. Light, fertilization and defoliation had little impact on foliar defensive chemistry. In the second experiment, there was a reduction in total biomass when caterpillar damage was applied. The root^:/hoot ratio increased under low soil fertility and was not affected by defoliation. Stem-diameter growth rates and specific leaf area did not vary by damage type or fertilization. Foliar protein increased through time, and more strongly in defoliated plants than in controls, while peroxidase activity and total flavonoids decreased with time. Overall, resource limitations were more influential than damage in the growth of juvenile L. maackii plants. CONCLUSIONS: The findings illustrate that even when resources are limited, the tolerance and defence against herbivory of a woody invasive plant in the juvenile stage may contribute to the establishment and persistence of some species in a variety of habitats.


Subject(s)
Herbivory , Light , Lonicera/growth & development , Nitrogen/metabolism , Animals , Flavonoids/metabolism , Lonicera/metabolism , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...