Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 23(3): 197-203, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26854663

ABSTRACT

Large protein complexes assemble spontaneously, yet their subunits do not prematurely form unwanted aggregates. This paradox is epitomized in the bacterial flagellar motor, a sophisticated rotary motor and sensory switch consisting of hundreds of subunits. Here we demonstrate that Escherichia coli FliG, one of the earliest-assembling flagellar motor proteins, forms ordered ring structures via domain-swap polymerization, which in other proteins has been associated with uncontrolled and deleterious protein aggregation. Solution structural data, in combination with in vivo biochemical cross-linking experiments and evolutionary covariance analysis, revealed that FliG exists predominantly as a monomer in solution but only as domain-swapped polymers in assembled flagellar motors. We propose a general structural and thermodynamic model for self-assembly, in which a structural template controls assembly and shapes polymer formation into rings.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/chemistry , Flagella/chemistry , Macromolecular Substances/metabolism , Molecular Motor Proteins/metabolism , Organelle Biogenesis , Protein Multimerization , Bacterial Proteins/chemistry , Macromolecular Substances/chemistry , Magnetic Resonance Spectroscopy , Models, Biological , Models, Chemical , Models, Molecular , Molecular Motor Proteins/chemistry , Protein Conformation
2.
Biomol NMR Assign ; 6(1): 31-4, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21643835

ABSTRACT

LMO4 is a broadly expressed LIM-only protein that is involved in neural tube development and implicated in breast cancer. Here we report backbone and side chain NMR assignments for an engineered intramolecular complex of the N-terminal LIM domain from LMO4 tethered to residues 641-685 of C-terminal binding protein interacting protein (CtIP/RBBP8).


Subject(s)
Carrier Proteins/chemistry , LIM-Homeodomain Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence , Carrier Proteins/metabolism , LIM-Homeodomain Proteins/metabolism , Molecular Sequence Data
3.
Proteins ; 79(8): 2365-71, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21638332

ABSTRACT

One of the most common ways to demonstrate a direct protein-protein interaction in vitro is the glutathione-S-transferse (GST)-pulldown. Here we report the detailed characterization of a putative interaction between two transcription factor proteins, GATA-1 and Krüppel-like factor 3 (KLF3/BKLF) that show robust interactions in GST-pulldown experiments. Attempts to map the interaction interface of GATA-1 on KLF3 using a mutagenic screening approach did not yield a contiguous binding face on KLF3, suggesting that the interaction might be non-specific. NMR experiments showed that the proteins do not interact at protein concentrations of 50-100 µM. Rather, the GST tag can cause part of KLF3 to misfold. In addition to misfolding, the fact that both proteins are DNA-binding domains appears to introduce binding artifacts (possibly nucleic acid bridging) that cannot be resolved by the addition of nucleases or ethidium bromide (EtBr). This study emphasizes the need for caution in relying on GST-pulldown results and related methods, without convincing confirmation from different approaches.


Subject(s)
GATA1 Transcription Factor/metabolism , Kruppel-Like Transcription Factors/metabolism , Animals , Mice , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
4.
Biochem J ; 431(1): 23-9, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20681948

ABSTRACT

RNF4 [RING (really interesting new gene) finger protein 4] family ubiquitin ligases are RING E3 ligases that regulate the homoeostasis of SUMOylated proteins by promoting their ubiquitylation. In the present paper we report that the RING domain of RNF4 forms a stable dimer, and that dimerization is required for ubiquitin transfer. Our results suggest that the stability of the E2~ubiquitin thioester bond is regulated by RING domain dimerization.


Subject(s)
Nuclear Proteins/chemistry , Transcription Factors/chemistry , Ubiquitin-Protein Ligases/chemistry , Animals , Dimerization , Mice , Models, Molecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Rats , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
J Biol Chem ; 281(38): 28296-306, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-16861236

ABSTRACT

GATA-1 and PU.1 are transcription factors that control erythroid and myeloid development, respectively. The two proteins have been shown to function in an antagonistic fashion, with GATA-1 repressing PU.1 activity during erythropoiesis and PU.1 repressing GATA-1 function during myelopoiesis. It has also become clear that this functional antagonism involves direct interactions between the two proteins. However, the molecular basis for these interactions is not known, and a number of inconsistencies exist in the literature. We have used a range of biophysical methods to define the molecular details of the GATA-1-PU.1 interaction. A combination of NMR titration data and extensive mutagenesis revealed that the PU.1-Ets domain and the GATA-1 C-terminal zinc finger (CF) form a low affinity interaction in which specific regions of each protein are implicated. Surprisingly, the interaction cannot be disrupted by single alanine substitution mutations, suggesting that binding is distributed over an extended interface. The C-terminal basic tail region of CF appears to be sufficient to mediate an interaction with PU.1-Ets, and neither acetylation nor phosphorylation of a peptide corresponding to this region disrupts binding, indicating that the interaction is not dominated by electrostatic interactions. The CF basic tail shares significant sequence homology with the PU.1 interacting motif from c-Jun, suggesting that GATA-1 and c-Jun might compete to bind PU.1. Taken together, our data provide a molecular perspective on the GATA-1-PU.1 interaction, resolving several issues in the existing data and providing insight into the mechanisms through which these two proteins combine to regulate blood development.


Subject(s)
GATA1 Transcription Factor/chemistry , Proto-Oncogene Proteins/chemistry , Trans-Activators/chemistry , Acetylation , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , DNA/metabolism , GATA1 Transcription Factor/physiology , Hematopoiesis , Humans , Mice , Molecular Sequence Data , Phosphorylation , Proto-Oncogene Proteins/physiology , Trans-Activators/physiology , Zinc Fingers
6.
Biochemistry ; 44(6): 1980-8, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15697223

ABSTRACT

We have determined the solution structure of rSS3, a recombinant form of the type I shorthorn sculpin antifreeze protein (AFP), at 278 and 268 K. This AFP contains an unusual sequence of N-terminal residues, together with two of the 11-residue repeats that are characteristic of the type I winter flounder AFP. The solution conformation of the N-terminal region of the sculpin AFP has been assumed to be the critical factor that results in recognition of different ice planes by the sculpin and flounder AFPs. At 278 K, the two repeats units (residues 11-20 and 21-32) in rSS3 form a continuous alpha-helix, with the residues 30-33 in the second repeat somewhat less well defined. Within the N-terminal region, residues 2-6 are well defined and helical and linked to the main helix by a more flexible region comprising residues A7-T11. At 268 K the AFP is overall more helical but retains the apparent hinge region. The helical conformation of the two repeats units is almost identical to the corresponding repeats in the type I winter flounder AFP. We also show that while tetracetylated rSS3 has antifreeze activity comparable to the natural AFP, its overall structure is the same as that of the unacetylated peptide. These data provide some insight into the structural determinants of antifreeze activity and should assist in the development of models that explain the recognition of different ice interfaces by the sculpin and flounder type I AFPs.


Subject(s)
Antifreeze Proteins, Type I/chemistry , Fishes , Thermodynamics , Acetylation , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Flounder , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Solutions , Structural Homology, Protein , Temperature
7.
Structure ; 12(1): 145-56, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14725774

ABSTRACT

Superantigens are a class of microbial proteins with the ability to excessively activate T cells by binding to the T cell receptor. The staphylococcal and streptococcal superantigens are closely related in structure and possess an N-terminal domain that resembles an OB fold and a C-terminal domain similar to a beta-grasp fold. Yersinia pseudotuberculosis produces superantigens, YPMa, YPMb, and YPMc, which have no significant amino acid similarity to other proteins. We have determined the crystal and solution structures of YPMa, which show that the protein has a jelly-roll fold. The closest structural neighbors to YPMa are viral capsid proteins and members of the tumor necrosis factor superfamily. In the crystal structure, YPMa packs as a trimer, another feature shared with viral capsid proteins and TNF superfamily proteins. However, in solution YPMa behaves as a monomer, and any functional relevance of the trimer observed in the crystals is yet to be established.


Subject(s)
Models, Molecular , Protein Folding , Superantigens/chemistry , Yersinia pseudotuberculosis/immunology , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Molecular Sequence Data , Yersinia pseudotuberculosis/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...