Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077788

ABSTRACT

BACKGROUND: Fibroblast Activation Protein (FAP) is a new target for positron emission tomography and computed tomography (PET/CT) imaging of epithelial tumours embedded in a fibrous stroma. Adenoid cystic carcinomas (ACCs) have shown elevated tracer uptake in 68Gallium (68Ga)-labelled FAPIs in previous studies. The current gold standard for ACC imaging is contrast-enhanced (ce) MRI, where intertumoural heterogeneity leads to variable appearance on T1-weighted (T1w) and T2-weighted (T2w) images. In this retrospective analysis, we correlated 68Ga-FAPI PET signalling at three time points with ceT1w and T2w MRI signals to further characterise the significance of 68Ga-FAPI uptake in ACCs. METHODS: Clinical PET/CT scans of 12 ACC patients were performed at 10, 60 and 180 min post i.v. administration of 68Ga-labelled-FAPI tracer molecules. 68Ga-PET- and corresponding MRI-scans were co-registered, and 3D volumetric segmentations were performed on ceT1w and T2w lesions of co-registered MRI slides. Signal intensity values of 68Ga-FAPI PET signalling and ceT1w/T2w MRI scans were analysed for their pixelwise correlation in each patient. Pooled estimates of the correlation coefficients were calculated using the Fisher z-transformation. RESULTS: 68Ga-FAPI PET signals showed a very weak positive correlation with ceT1w values (pooled correlation 0.114, 0.147 and 0.162 at 10, 60 and 180 min) and a weak negative correlation with T2w values (pooled correlation -0.148, -0.121 and -0.225 at 10, 60 and 180 min). Individual r-values at 60 min ranged from -0.130 to 0.434 in ceT1w and from -0.466 to 0.637 in T2w MRI scans. CONCLUSION: There are only slight correlations between the intensity of 68Ga-FAPI PET signals and tumour appearance in ceT1w or T2w MRI scans, which underlines that 68Ga-FAPI PET signalling is not a surrogate marker of MRI sequences but an independent signal.

2.
J Nucl Med ; 63(12): 1844-1851, 2022 12.
Article in English | MEDLINE | ID: mdl-35618480

ABSTRACT

68Ga-labeled fibroblast activation protein (FAP) inhibitor (68Ga-FAPI) PET targets 68Ga-FAPI-positive activated fibroblasts and is a promising imaging technique for various types of cancer and nonmalignant pathologies. However, discrimination between malignant and nonmalignant 68Ga-FAPI-positive lesions based on static PET with a single acquisition time point can be challenging. Additionally, the optimal imaging time point for 68Ga-FAPI PET has not been identified yet, and different 68Ga-FAPI tracer variants are currently used. In this retrospective analysis, we evaluate the diagnostic value of repetitive early 68Ga-FAPI PET with 68Ga-FAPI-02, 68Ga-FAPI-46, and 68Ga-FAPI-74 for malignant, inflammatory/reactive, and degenerative lesions and describe the implications for future 68Ga-FAPI imaging protocols. Methods: Whole-body PET scans of 24 cancer patients were acquired at 10, 22, 34, 46, and 58 min after the administration of 150-250 MBq of 68Ga-FAPI tracer molecules (8 patients each for 68Ga-FAPI-02, 68Ga-FAPI-46, and 68Ga-FAPI-74). Detection rates and SUVs (SUVmax and SUVmean) for healthy tissues, cancer manifestations, and nonmalignant lesions were measured, and target-to-background ratios (TBR) versus blood and fat were calculated for all acquisition time points. Results: For most healthy tissues except fat and spinal canal, biodistribution analysis showed decreasing uptake over time. We analyzed 134 malignant, inflammatory/reactive, and degenerative lesions. Detection rates were minimally reduced for the first 2 acquisition time points and remained at a constant high level from 34 to 58 min after injection. The uptake of all 3 variants was higher in malignant and inflammatory/reactive lesions than in degenerative lesions. 68Ga-FAPI-46 showed the highest uptake and TBRs in all pathologies. For all variants, TBRs versus blood constantly increased over time for all pathologies, and TBRs versus fat were constant or decreased slightly. Conclusion: 68Ga-FAPI PET/CT is a promising imaging modality for malignancies and benign lesions. Repetitive early PET acquisition added diagnostic value for the discrimination of malignant from nonmalignant 68Ga-FAPI-positive lesions. High detection rates and TBRs over time confirmed that PET acquisition earlier than 60 min after injection delivers high-contrast images. Additionally, considering clinical feasibility, acquisition at 30-40 min after injection might be a reasonable compromise. Different 68Ga-FAPI variants show significant differences in time-dependent biodistributional behavior and should be selected carefully depending on the clinical setting.


Subject(s)
Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes , Tissue Distribution , Retrospective Studies , Neoplasms/diagnostic imaging , Neoplasms/metabolism
3.
Radiother Oncol ; 160: 192-201, 2021 07.
Article in English | MEDLINE | ID: mdl-33940087

ABSTRACT

BACKGROUND: Adenoid cystic carcinomas (ACCs) are rare epithelial tumors mostly situated in the head and neck region and characterized by infiltrative growth. The tumor stroma of ACCs includes cancer-associated fibroblasts (CAFs) expressing Fibroblast Activation Protein (FAP), a new target for positron emission tomography (PET) imaging. Here we describe the value of PET/ computed tomography (PET/CT) imaging using 68Ga-labelled FAP-Inhibitors (68Ga-FAPI-PET/CT) and their clinical potential for staging and radiotherapy planning in 12 ACC patients (7 primary, 5 recurrent). PATIENTS AND METHODS: Patients underwent contrast enhanced staging CT (ceCT) and magnetic resonance imaging (ceMRI) before 68Ga-FAPI - PET/CT. PET-scans were acquired 10, 60 and 180 minutes after administration of 150-250 MBq of 68Ga-labelled FAPI tracers. SUVmax and SUVmean values of ACCs and healthy organs were obtained using a 60% of maximum iso-contour. FAP and alpha smooth muscle actin (α-SMA) immunohistochemistry was performed in 13 cases (3 with and 10 without 68Ga FAPI-PET/CT). Staging and radiotherapy planning based on 68Ga-FAPI-PET/CT versus ceCT/MRI alone were compared. RESULTS: We observed elevated tracer uptake in all ACCs. Immunohistochemistry showed FAP-expressing CAFs in the tumor. Compared to conventional staging, 68Ga-FAPI-PET/CT led to upstaging in 2/12 patients and to detection of additional metastases in 3 patients, thus in total 42% of patients had their staging altered. Moreover, 68Ga-FAPI PET improved the accuracy of target volume delineation for radiotherapy, as compared to CT and MRI. CONCLUSION: 68Ga-FAPI-PET/CT is a promising imaging modality for ACC, increasing the accuracy of staging exams and radiotherapy planning volumes, as compared conventional to CT and MRI.


Subject(s)
Carcinoma, Adenoid Cystic , Positron Emission Tomography Computed Tomography , Carcinoma, Adenoid Cystic/diagnostic imaging , Carcinoma, Adenoid Cystic/radiotherapy , Gallium Radioisotopes , Humans , Positron-Emission Tomography
4.
J Nucl Med ; 62(6): 779-786, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33097632

ABSTRACT

Pancreatic ductal carcinoma (PDAC) is a highly lethal cancer, and early detection and accurate staging are critical to prolonging survival. PDAC typically has a prominent stroma including cancer-associated fibroblasts that express fibroblast activation protein (FAP). FAP is a new target molecule for PET imaging of various tumors. In this retrospective study, we describe the clinical impact of PET/CT imaging using 68Ga-labeled FAP-inhibitors (68Ga-FAPI PET/CT) in 19 patients with PDAC (7 primary, 12 progressive/recurrent). Methods: All patients underwent contrast-enhanced CT (ceCT) for TNM staging before 68Ga-FAPI PET/CT imaging. PET scans were acquired 60 min after administration of 150-250 MBq of 68Ga-labeled FAP-specific tracers. To characterize 68Ga-FAPI uptake over time, additional scans after 10 or 180 min were acquired in 6 patients. SUVmax and SUVmean values of PDAC manifestations and healthy organs were analyzed. The tumor burden according to 68Ga-FAPI PET/CT was compared with TNM staging based on ceCT and changes in oncologic management were recorded. Results: Compared with ceCT, 68Ga-FAPI PET/CT results led to changes in TNM staging in 10 of 19 patients. Eight of 12 patients with recurrent/progressive disease were upstaged, 1 was downstaged, and 3 had no change. In newly diagnosed PDAC, 1 of 7 patients was upstaged, and the staging of 6 patients did not change. Changes in oncologic management occurred in 7 patients. Markedly elevated uptake of 68Ga-FAPI in PDAC manifestations after 1 h was seen in most cases. Differentiation from pancreatitis based on static imaging 1 h after injection was challenging. With respect to imaging after multiple time points, PDAC and pancreatitis showed a trend for differential uptake kinetics. Conclusion:68Ga-FAPI PET/CT led to restaging in half of the patients with PDAC and most patients with recurrent disease compared with standard of care imaging. The clinical value of 68Ga-FAPI PET/CT should be further investigated.


Subject(s)
Adenocarcinoma/diagnostic imaging , Adenocarcinoma/therapy , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Positron Emission Tomography Computed Tomography , Quinolines , Adenocarcinoma/pathology , Female , Humans , Male , Middle Aged , Pancreatic Neoplasms/pathology , Recurrence , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...