Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 129(14): 2829-40, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27278019

ABSTRACT

Rif induces dorsal filopodia but the signaling pathway responsible for this has not been identified. We show here that Rif interacts with the I-BAR family protein IRTKS (also known as BAIAP2L1) through its I-BAR domain. Rif also interacts with Pinkbar (also known as BAIAP2L2) in N1E-115 mouse neuroblastoma cells. IRTKS and Rif induce dorsal membrane ruffles and filopodia. Dominant-negative Rif inhibits the formation of IRTKS-induced morphological structures, and Rif activity is blocked in IRTKS-knockout (KO) cells. To further define the Rif-IRTKS signaling pathway, we identify Eps8 and WAVE2 (also known as WASF2) as IRTKS interactors. We find that Eps8 regulates the size and number of dorsal filopodia and membrane ruffles downstream of Rif-IRTKS signaling, whereas WAVE2 modulates dorsal membrane ruffling. Furthermore, our data suggests that Tir, a protein essential for enterohemorrhagic Escherichia coli infection, might compete for Rif for interaction with the I-BAR domain of IRTKS. Based on this evidence, we propose a model in which Rho family GTPases use the I-BAR proteins, IRSp53 (also known as BAIAP2), IRTKS and Pinkbar, as a central mechanism to modulate cell morphology.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GTP Phosphohydrolases/metabolism , Microfilament Proteins/metabolism , Pseudopodia/metabolism , Signal Transduction , Wiskott-Aldrich Syndrome Protein Family/metabolism , Animals , HeLa Cells , Humans , Mice , Models, Biological , NIH 3T3 Cells , Protein Binding
2.
Opt Lett ; 37(3): 398-400, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22297365

ABSTRACT

A novel magnetic field fiber sensor based on magnetic fluid is proposed. The sensor is configured as a Sagnac interferometer structure with a magnetic fluid film and a section of polarization maintaining fiber inserted into the fiber loop to produce a sinusoidal interference spectrum for measurement. The output interference spectrum is shifted as the change of the applied magnetic field strength with a sensitivity of 16.7 pm/Oe and a resolution of 0.60 Oe. The output optical power is varied with the change of the applied magnetic field strength with a sensitivity of 0.3998 dB/Oe.

3.
Nanoscale Res Lett ; 6: 535, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21961940

ABSTRACT

The use of nanowires (NWs) for labeling, sensing, and sorting is the basis of detecting biomolecules attached on NWs by optical and magnetic properties. In spite of many advantages, the use of biomolecules-attached NWs sensing by photoelectrochemical (PEC) study is almost non-existent. In this article, the PEC study of dye-attached single-stranded DNA on Au NWs and Au-Ni-Au multilayer NWs prepared by pulse electrodeposition are investigated. Owing to quantum-quenching effect, the multilayer Au NWs exhibit low optical absorbance when compared with Au NWs. The tagged Au NWs show good fluorescence (emission) at 570 nm, indicating significant improvement in the reflectivity. Optimum results obtained for tagged Au NWs attached on functionalized carbon electrodes and its PEC behavior is also presented. A twofold enhancement in photocurrent is observed with an average dark current of 10 µA for Au NWs coated on functionalized sensing electrode. The importance of these PEC and optical studies provides an inexpensive and facile processing platform for Au NWs that may be suitable for biolabeling applications.

4.
ACS Nano ; 5(7): 5490-8, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21702483

ABSTRACT

We report on the first observation of an anomalous temperature-dependent resistance behavior in coupled Bernal and rhombohedral stacking graphene. At low-temperature regime (<50 K) the temperature-dependent resistance exhibits a drop while at high-temperature regions (>250 K), the resistance increases. In the transition region (50-250 K) an oscillatory resistance behavior was observed. This property is not present in any layered graphene structures other than five-layer. We propose that the temperature-dependent resistance behavior is governed by the interplay of the Coulomb and short-range scatterings. The origin of the oscillatory resistance behavior is the ABCAB and ABABA stacking configurations, which induces tunable bandgap in the five-layer graphene. The obtained results also indicate that a perpendicular magnetic field opens an excitonic gap because of the Coulomb interaction-driven electronic instabilities, and the bandgap of the five-layer graphene is thermally activated. Potentially, the observed phenomenon provides important transport information to the design of few-layer graphene transistors that can be manipulated by a magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...