Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Bras Bot ; 45(4): 1209-1222, 2022.
Article in English | MEDLINE | ID: mdl-36320930

ABSTRACT

Boesenbergia rotunda (L.) Mansf. is a medically important ginger species of the family Zingiberaceae but its genomic information on molecular phylogeny and identification is scarce. In this work, the chloroplast genome of B. rotunda was sequenced, characterized and compared to the other Zingiberaceae species to provide chloroplast genetic resources and to determine its phylogenetic position in the family. The chloroplast genome of B. rotunda was 163,817 bp in length and consisted of a large single-copy (LSC) region of 88,302 bp, a small single-copy (SSC) region of 16,023 bp and a pair of inverted repeats (IRA and IRB) of 29,746 bp each. The chloroplast genome contained 113 unique genes, including 79 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Several genes had atypical start codons, while most amino acids exhibited biased usage of synonymous codons. Comparative analyses with various chloroplast genomes of Zingiberaceae taxa revealed several highly variable regions (psbK-psbI, trnT-GGU-psbD, rbcL-accD, ndhF-rpl32, and ycf1) in the LSC and SSC regions in the chloroplast genome of B. rotunda that could be utilized as molecular markers for DNA barcoding and species delimitation. Phylogenetic analyses based on shared protein-coding genes revealed that B. rotunda formed a distinct lineage with B. kingii Mood & L.M.Prince, in a subclade that also contained the genera Kaempferia and Zingiber. These findings constitute the first chloroplast genome information of B. rotunda that could be a reference for phylogenetic analysis and identification of genus Boesenbergia within the Zingiberaceae family. Supplementary Information: The online version contains supplementary material available at 10.1007/s40415-022-00845-w.

2.
Antonie Van Leeuwenhoek ; 115(8): 995-1007, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35674967

ABSTRACT

In this study, a novel bacterium designated F3b2T was isolated from the gut sample of weaver ant Oecophylla smaragdina and characterised. Strain F3b2T was a Gram-negative, aerobic, non-motile, ovoid-shaped bacterium and grows optimally at 28-30 °C. Its major respiratory quinone is ubiquinone 10 (Q-10) and the major fatty acids are C18:1 ω7c, C19:0 cyclo ω8c and C16:0, representing 85% of the total fatty acids. The 16S rRNA gene sequence of strain F3b2T was highest in similarity to that of Oecophyllibacter saccharovorans DSM106907T and Swingsia samuieinsis NBRC 107927T at 94.35% and 91.96%, respectively. A 16S rRNA gene-based phylogenetic analysis and a core genes-based phylogenomic analysis placed strain F3b2T in a distinct lineage in the family Acetobacteraceae. The phylogenetic placement was supported by lower than species delineation threshold average nucleotide identity (ANI) (≤ 70.2%), in silico DNA-DNA hybridization (DDH) (≤ 39.5%) and average amino acid identity (AAI) (≤ 63.5%) values between strain F3b2T and closest neighbours. These overall genome relatedness indices also supported the assignment of strain F3b2T to a novel genus within Acetobacteraceae. The genome of strain F3b2T was 1.96 Mb with 60.4% G + C DNA content. Based on these results, strain F3b2T represented a novel taxon of Acetobacteraceae, for which we proposed the name Formicincola oecophyllae gen. nov. sp. nov., and strain F3b2T (= LMG 30590T = DSM 106908T = NBRC 113640T = KCTC 62951T) as the type strain.


Subject(s)
Acetobacteraceae , Ants , Acetobacteraceae/genetics , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
3.
Microorganisms ; 10(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35744680

ABSTRACT

Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.

4.
Mol Biol Rep ; 48(8): 6047-6056, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34357549

ABSTRACT

BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank. METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific. CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.


Subject(s)
Genome, Mitochondrial/genetics , Tephritidae/genetics , Animals , Base Composition/genetics , Base Sequence/genetics , DNA, Mitochondrial/genetics , Diptera/genetics , High-Throughput Nucleotide Sequencing/methods , Insecta/genetics , Phylogeny , Sequence Analysis, DNA/methods
5.
Mol Biotechnol ; 63(4): 316-326, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33565047

ABSTRACT

Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.


Subject(s)
Dimethylallyltranstransferase/genetics , Dimethylallyltranstransferase/metabolism , Flavanones/metabolism , Zingiberaceae/enzymology , Binding Sites , Cell-Free System , Dimethylallyltranstransferase/chemistry , Gene Expression , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Weight , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation , Zingiberaceae/genetics
6.
PeerJ ; 8: e9094, 2020.
Article in English | MEDLINE | ID: mdl-32391211

ABSTRACT

Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.

7.
Toxins (Basel) ; 7(2): 407-22, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25654788

ABSTRACT

Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity. In this study, we have used site-directed mutagenesis to investigate the role of amino acids in the pore-forming N-terminal region and the conserved aromatic cluster required for cell membrane binding. A total of 10 mutants of HALT-1 were constructed and tested for their haemolytic and cytolytic activity on human erythrocytes and HeLa cells, respectively. Insertion of 1-4 negatively charged residues in the N-terminal region of HALT-1 strongly reduced haemolytic and cytolytic activity, suggesting that the length or charge of the N-terminal region is critical for pore-forming activity. Moreover, substitution of amino acids in the conserved aromatic cluster reduced haemolytic and cytolytic activity by more than 80%, suggesting that these aromatic amino acids are important for attachment to the lipid membrane as shown for other actinoporins. The results suggest that HALT-1 and other actinoporins share similar mechanisms of pore formation and that it is critical for HALT-1 to maintain an amphipathic helix at the N-terminus and an aromatic amino acid-rich segment at the site of membrane binding.


Subject(s)
Hemolysis/drug effects , Hydra/metabolism , Marine Toxins/toxicity , Multigene Family , Pore Forming Cytotoxic Proteins/toxicity , Amino Acid Sequence , Animals , Electrophoresis, Polyacrylamide Gel , Erythrocytes/drug effects , Erythrocytes/pathology , HeLa Cells , Humans , Marine Toxins/genetics , Marine Toxins/isolation & purification , Molecular Sequence Data , Mutagenesis, Site-Directed , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/isolation & purification , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...