Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38747997

ABSTRACT

Functionalization of perovskite nanocrystal surfaces with thiocyanate anions presents a transformative approach to enhancing stability and photoluminescence quantum yield (PLQY) through surface defect passivation. This study investigates the role of thiocyanate ligands in modifying the optoelectronic properties of CsPbBr3 nanocrystals. We employed ultrafast two-dimensional infrared spectroscopy to investigate the nature of the dynamic interaction of thiocyanate ligands with nanocrystal surfaces, providing insights into the mechanisms underlying the observed increase in PLQY and stability. Our analysis reveals that the thiocyanate ligands efficiently passivate the surface defects, thereby enhancing the PLQY and the stability of the treated nanocrystals. The spectroscopic evidence supports a model where thiocyanate binds to under-coordinated lead atoms, contributing to a stable nanocrystal surface with enhanced optoelectronic performance. This ligand-induced passivation mechanism advances our understanding of surface chemistry's role in optimizing nanomaterials for solar cell and LED applications.

2.
Cryst Growth Des ; 24(8): 3237-3245, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659663

ABSTRACT

Heterostructures in nanoparticles challenge our common understanding of interfaces due to quantum confinement and size effects, giving rise to synergistic properties. An alternating heterostructure in which multiple and reoccurring interfaces appear in a single nanocrystal is hypothesized to accentuate such properties. We present a colloidal synthesis for perovskite layered heterostructure nanoparticles with a (PbBr2)2(AMTP)2PbBr4 composition. By varying the synthetic parameters, such as synthesis temperature, solvent, and selection of precursors, we control particle size, shape, and product priority. The structures are validated by X-ray and electron diffraction techniques. The heterostructure nanoparticles' main optical feature is a broad emission peak, showing the same range of wavelengths compared to the bulk sample.

3.
Chem Mater ; 35(21): 9064-9072, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37982006

ABSTRACT

Lead-free perovskite nanocrystals are of interest due to their nontoxicity and potential application in the display industry. However, engineering their optical properties is nontrivial and demands an understanding of emission from both self-trapped and free excitons. Here, we focus on tuning silver-based double perovskite nanocrystals' optical properties via two iso-valent dopants, Bi and Sb. The photoluminescence quantum yield of the intrinsic Cs2Ag1-yNayInCl6 perovskite increased dramatically upon doping. However, the two dopants affect the optical properties very differently. We hypothesize that the differences arise from their differences in electronic level contributions and ionic sizes. This hypothesis is validated through absorption and temperature dependence photoluminescence measurements, namely, by employing the Huang-Rhys factor, which indicates the coupling of the exciton to the lattice environment. The larger ionic size of Bi also plays a role in inducing significant microstraining verified via synchrotron measurements. These differences make Bi more sensitive to doping concentration over antimony which displays brighter emission (QY ∼40%). Such understanding is important for engineering optical properties in double perovskites, especially in light of recent achievements in boosting the photoluminescence quantum yield.

4.
Nanoscale ; 14(46): 17262-17270, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36377431

ABSTRACT

Colloidal semiconductor nanocrystals (NCs) are used as bright chromatic fluorophores for energy-efficient displays. We focus here on the size-dependent Stokes shift for CsPbBr3 nanocrystals. The Stokes shift, i.e., the difference between the wavelengths of absorption and emission maxima, is crucial for display application, as it controls the degree to which light is reabsorbed by the emitting material reducing the energetic efficiency. One major impediment to the industrial adoption of NCs is that slight deviations in manufacturing conditions may result in a wide dispersion of the product's properties. A data-driven analysis of over 2000 reactions comparing two data sets, one produced via standard colloidal synthesis and the other via high-throughput automated synthesis is discussed. We show that differences in the reaction conditions of colloidal CsPbBr3 nanocrystals yield nanocrystals with opposite Stokes shift size-dependent trends. These match the morphologies of two-dimensional nanoplatelets (NPLs) and nanocrystal cubes. The Stokes shift size dependence trend of NPLs and nanocubes is non-monotonic indicating different physics is at play for the two nanocrystal morphologies. For nanocrystals with cubic shape, with the increase of edge length, there is a significant decrease in Stokes shift values. However, for NPLs with the increase of thickness (1-4 ML), Stokes shift values will increase. The study emphasizes the transition from a spectroscopic point of view and relates the two Stokes shift trends to 2D and 0D exciton dimensionalities for the two morphologies. Our findings highlight the importance of CsPbBr3 nanocrystal morphology for Stokes shift prediction.

SELECTION OF CITATIONS
SEARCH DETAIL
...