Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(2): 633-650, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38164788

ABSTRACT

Asymmetric geometry (aspect ratio >1), moderate stiffness (i.e., semielasticity), large surface area, and low mucoadhesion of nanoparticles are the main features to reach the brain by penetrating across the nasal mucosa. Herein, a new application has been presented for the use of multifunctional Janus nanoparticles (JNPs) with controllable geometry and size as a nose-to-brain (N2B) delivery system by changing proportions of Precirol ATO 5 and polycaprolactone compartments and other operating conditions. To bring to light the N2B application of JNPs, the results are presented in comparison with polymer and solid lipid nanoparticles, which are frequently used in the literature regarding their biopharmaceutical aspects: mucoadhesion and permeability through the nasal mucosa. The morphology and geometry of JPs were observed via cryogenic-temperature transmission electron microscopy images, and their particle sizes were verified by dynamic light scattering, atomic force microscopy, and scanning electron microscopy. Although all NPs showed penetration across the mucus barrier, the best increase in penetration was observed with asymmetric and semielastic JNPs, which have low interaction ability with the mucus layer. This study presents a new and promising field of application for a multifunctional system suitable for N2B delivery, potentially benefiting the treatment of brain tumors and other central nervous system diseases.


Subject(s)
Liposomes , Multifunctional Nanoparticles , Nanoparticles , Animals , Polymers , Larva , Drug Delivery Systems/methods , Brain , Nasal Mucosa , Mucus , Elasticity , Lipids
2.
J Colloid Interface Sci ; 660: 177-191, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38241866

ABSTRACT

HYPOTHESIS: Specific alkaline cation effects control the area per headgroup of alkylester sulphates, which modifies the spontaneous packing of the surfactants. The resulting effective packing minimizes the total bending energy frustration and results in a Boltzmann distribution of coexisting pseudo-phases. These pseudo-phases constitute of micelles and other structures of complex morphology: cylindrical sections, end-caps, branching points, and bilayers, all in dynamic equilibrium. According to our model, excess of end-caps or excess of branching points lead to low viscosity, whereas comparable amounts of both structures lead to viscosity maxima. Relative occurrence of branching points and end-caps is the molecular mechanism at the origin of the salt-sensitive viscosity peak in the "salt-curve" (viscosity against salt concentration at fixed surfactant concentration). Up to now, and as indicated in former papers, this has been a pure model without microscopic verification. EXPERIMENTS: In this work, we introduce explicit counting of the number of coexisting pseudo-phases as observed by state-of-the-art cryogenic transmission electron microscopy (cryo-TEM). The model system used, i.e., sodium laurylethersulfate (SLES)/salt/water, is very common as part of cosmetic formulations. As added salts, we used Li+, Na+, K+, and Cs+ chlorides. In parallel to imaging, we measured the macroscopic viscosities of the different solutions. FINDINGS: With cryogenic transmission electron microscopy (cryo-TEM), we imaged a variety of morphologies (pseudo-phases) in the different aqueous surfactant/salt solutions: cylindrical micelles with end-caps, discs surrounded by "rims", entangled thread-like micelles with branching points, networks with gliding branching points, and bilayers. The relative chemical potentials of these morphologies could be approximated simply by counting the relative proportion of their occurrence. This simple multi-scale approach avoids any ad-hoc "specificity" assumption of ions, and is based on the bending energy model in an extended version of the Benedek "ladder model". It is capable of explaining and even quantifying the location of all viscosity peaks in the "salt-curves" for the different cations investigated, thus confirming the previously proposed model experimentally, and - thanks to cryo-TEM - for the first time on a microscopic scale. Moreover, this approach can also be applied when the added cations lead to newly observed pseudo-phases, such as discs and vesicles. To the best of our knowledge, this is the first time that cryo-TEM is used, together with a mesoscopic model, to describe a macroscopic property such as viscosity and specific ion effects on it, without any a priori assumption about these effects. So, in total, we could a) confirm the predictions of the previously developed model, b) use cryo-TEM imaging and viscosity measurements to predict and find unusual morphologies when varying the cations of the added salt, and c) count the pseudo-phases in cryo-TEM micrographs to quantitatively explain the different nanostructures.

3.
NPJ Biofilms Microbiomes ; 9(1): 30, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270554

ABSTRACT

The gut microbiota is now well known to affect the host's immune system. One way of bacterial communication with host cells is via the secretion of vesicles, small membrane structures containing various cargo. Research on vesicles secreted by Gram-positive gut bacteria, their mechanisms of interaction with the host and their immune-modulatory effects are still relatively scarce. Here we characterized the size, protein content, and immune-modulatory effects of extracellular vesicles (EVs) secreted by a newly sequenced Gram-positive human gut symbiont strain - Bifidobacterium longum AO44. We found that B. longum EVs exert anti-inflammatory effects, inducing IL-10 secretion from both splenocytes and dendritic cells (DC)-CD4+ T cells co-cultures. Furthermore, the EVs protein content showed enrichment in ABC transporters, quorum sensing proteins, and extracellular solute-binding proteins, which were previously shown to have a prominent function in the anti-inflammatory effect of other strains of B. longum. This study underlines the importance of bacterial vesicles in facilitating the gut bacterial immune-modulatory effects on the host and sheds light on bacterial vesicles as future therapeutics.


Subject(s)
Bifidobacterium longum , Extracellular Vesicles , Humans , Phagocytosis , Bacteria , Anti-Inflammatory Agents/pharmacology
4.
J Microsc ; 290(2): 97-105, 2023 May.
Article in English | MEDLINE | ID: mdl-36807049

ABSTRACT

Sodium lauryl ether sulphate (SLES) is a detergent widely used in cosmetics and personal-care industries; hence, it is of particular interest to study the self-assembled nanostructure it forms at different conditions. Cryogenic transmission electron microscopy (cryo-TEM) is the most suitable technique for the direct-imaging of such systems. However, since SLES is sensitive to flow and shear, specimen preparation artefacts may misrepresent the native state of the solution. In this paper, we present different cryo-TEM specimen preparation methods, and show how they affect the nanostructure of the system. In fact, for this system, we were able to record the native state of the solution only after sufficient time of on-the-grid relaxation (OGR) after blotting. Here, we also intend to point out the importance of considering the nature of the solution when preparing cryo-TEM specimens.

SELECTION OF CITATIONS
SEARCH DETAIL
...