Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2431, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508475

ABSTRACT

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼40%) already for a small voltage bias (∼200 µV) thanks to the small energy scale of the system: the Al superconducting gap. With the help of an analytical theoretical model we can link the maximum rectification to the spin polarization (P) of the barrier and describe the quasi-ideal Shockley-diode behavior of the junction. This cryogenic spintronic rectifier is promising for the application in highly-sensitive radiation detection for which two different configurations are evaluated. In addition, the superconducting diode may pave the way for future low-dissipation and fast superconducting electronics.

2.
J Phys Condens Matter ; 25(11): 115301, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23399885

ABSTRACT

Core-hole induced electron excitations in fullerene molecules, and small-diameter conducting carbon nanotubes, are studied using density functional theory with minimal, split-valence, and triply-split-valence basis sets plus the generalized gradient approximation by Perdew-Burke-Ernzerhof for exchange and correlation. Finite-size computations are performed on the carbon atoms of a C(60) Bucky ball and a piece of (3, 3) armchair cylindrical network, terminated by hydrogen atoms, while periodically boundary conditions are imposed on a (3, 3) nanotube unit cell. Sudden creation of the core state is simulated by replacing a 1s electron pair, localized at a central site of the structures, with the effective pseudo-potentials of both neutral and ionized atomic carbon. Excited states are obtained from the ground-state (occupied and empty) electronic structure of the ionized systems, and their overlaps with the ground state of the neutral systems are computed. These overlaps enter Fermi's golden rule, which is corrected with lifetime and finite-temperature effects to simulate the many-electron response of the nanoobjects. A model based on the linked cluster expansion of the vacuum persistence amplitude of the neutral systems, in a parametric core-hole perturbation, is developed and found to be reasonably consistent with the density functional theory method. The simulated spectrum of the fullerene molecule is found to be in good agreement with x-ray photoemission experiments on thick C(60) films, reproducing the low energy satellites at excitation energies below 4 eV within a peak position error of ca. 0.3 eV. The nanotube spectra show some common features within the same experiments and describe well the measured x-ray photoelectron lineshape from nanotube bundles with an average diameter of 1.2 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...