Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 21(1): 435, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37957651

ABSTRACT

BACKGROUND: Infants born very and extremely premature (V/EPT) are at a significantly elevated risk for neurodevelopmental disorders and delays even in the absence of structural brain injuries. These risks may be due to earlier-than-typical exposure to the extrauterine environment, and its bright lights, loud noises, and exposures to painful procedures. Given the relative underdeveloped pain modulatory responses in these infants, frequent pain exposures may confer risk for later deficits. METHODS: Resting-state fMRI scans were collected at term equivalent age from 148 (45% male) infants born V/EPT and 99 infants (56% male) born at term age. Functional connectivity analyses were performed between functional regions correlating connectivity to the number of painful skin break procedures in the NICU, including heel lances, venipunctures, and IV placements. Subsequently, preterm infants returned at 18 months, for neurodevelopmental follow-up and completed assessments for autism risk and general neurodevelopment. RESULTS: We observed that V/EPT infants exhibit pronounced hyperconnectivity within the cerebellum and between the cerebellum and both limbic and paralimbic regions correlating with the number of skin break procedures. Moreover, skin breaks were strongly associated with autism risk, motor, and language scores at 18 months. Subsample analyses revealed that the same cerebellar connections strongly correlating with breaks at term age were associated with language dysfunction at 18 months. CONCLUSIONS: These results have significant implications for the clinical care of preterm infants undergoing painful exposures during routine NICU care, which typically occurs without anesthesia. Repeated pain exposures appear to have an increasingly detrimental effect on brain development during a critical period, and effects continue to be seen even 18 months later.


Subject(s)
Infant, Premature , Neurodevelopmental Disorders , Infant , Infant, Newborn , Humans , Male , Female , Neurodevelopmental Disorders/etiology , Magnetic Resonance Imaging , Cognition , Pain/etiology
2.
Pediatr Res ; 93(5): 1276-1284, 2023 04.
Article in English | MEDLINE | ID: mdl-36335267

ABSTRACT

BACKGROUND: Fetal growth restriction (FGR) is a risk factor for neurodevelopmental problems, yet remains poorly understood. We sought to examine the relationship between intrauterine development and neonatal neurobehavior in pregnancies diagnosed with antenatal FGR. METHODS: We recruited women with singleton pregnancies diagnosed with FGR and measured placental and fetal brain volumes using MRI. NICU Network Neurobehavioral Scale (NNNS) assessments were performed at term equivalent age. Associations between intrauterine volumes and neurobehavioral outcomes were assessed using generalized estimating equation models. RESULTS: We enrolled 44 women diagnosed with FGR who underwent fetal MRI and 28 infants underwent NNNS assessments. Placental volumes were associated with increased self-regulation and decreased excitability; total brain, brainstem, cortical and subcortical gray matter (SCGM) volumes were positively associated with higher self-regulation; SCGM also was positively associated with higher quality of movement; increasing cerebellar volumes were positively associated with attention, decreased lethargy, non-optimal reflexes and need for special handling; brainstem volumes also were associated with decreased lethargy and non-optimal reflexes; cerebral and cortical white matter volumes were positively associated with hypotonicity. CONCLUSION: Disrupted intrauterine growth in pregnancies complicated by antenatally diagnosed FGR is associated with altered neonatal neurobehavior. Further work to determine long-term neurodevelopmental impacts is warranted. IMPACT: Fetal growth restriction is a risk factor for adverse neurodevelopment, but remains difficult to accurately identify. Intrauterine brain volumes are associated with infant neurobehavior. The antenatal diagnosis of fetal growth restriction is a risk factor for abnormal infant neurobehavior.


Subject(s)
Fetal Growth Retardation , Placenta , Infant, Newborn , Infant , Humans , Pregnancy , Female , Placenta/diagnostic imaging , Placentation , Lethargy , Brain/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...