Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 29(23): 4870-4882, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37733811

ABSTRACT

PURPOSE: Tumors activate protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK, also called EIF2AK3) in response to hypoxia and nutrient deprivation as a stress-mitigation strategy. Here, we tested the hypothesis that inhibiting PERK with HC-5404 enhances the antitumor efficacy of standard-of-care VEGF receptor tyrosine kinase inhibitors (VEGFR-TKI). EXPERIMENTAL DESIGN: HC-5404 was characterized as a potent and selective PERK inhibitor, with favorable in vivo properties. Multiple renal cell carcinoma (RCC) tumor models were then cotreated with both HC-5404 and VEGFR-TKI in vivo, measuring tumor volume across time and evaluating tumor response by protein analysis and IHC. RESULTS: VEGFR-TKI including axitinib, cabozantinib, lenvatinib, and sunitinib induce PERK activation in 786-O RCC xenografts. Cotreatment with HC-5404 inhibited PERK in tumors and significantly increased antitumor effects of VEGFR-TKI across multiple RCC models, resulting in tumor stasis or regression. Analysis of tumor sections revealed that HC-5404 enhanced the antiangiogenic effects of axitinib and lenvatinib by inhibiting both new vasculature and mature tumor blood vessels. Xenografts that progress on axitinib monotherapy remain sensitive to the combination treatment, resulting in ∼20% tumor regression in the combination group. When tested across a panel of 18 RCC patient-derived xenograft (PDX) models, the combination induced greater antitumor effects relative to monotherapies. In this single animal study, nine out of 18 models responded with ≥50% tumor regression from baseline in the combination group. CONCLUSIONS: By disrupting an adaptive stress response evoked by VEGFR-TKI, HC-5404 presents a clinical opportunity to improve the antitumor effects of well-established standard-of-care therapies in RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Carcinoma, Renal Cell/pathology , Axitinib/pharmacology , Axitinib/therapeutic use , Kidney Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use
2.
Sci Transl Med ; 13(611): eaba7791, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524860

ABSTRACT

SUMOylation, the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to protein substrates, has been reported to suppress type I interferon (IFN1) responses. TAK-981, a selective small-molecule inhibitor of SUMOylation, pharmacologically reactivates IFN1 signaling and immune responses against cancers. In vivo treatment of wild-type mice with TAK-981 up-regulated IFN1 gene expression in blood cells and splenocytes. Ex vivo treatment of mouse and human dendritic cells promoted their IFN1-dependent activation, and vaccination studies in mice demonstrated stimulation of antigen cross-presentation and T cell priming in vivo. TAK-981 also directly stimulated T cell activation, driving enhanced T cell sensitivity and response to antigen ex vivo. Consistent with these observations, TAK-981 inhibited growth of syngeneic A20 and MC38 tumors in mice, dependent upon IFN1 signaling and CD8+ T cells, and associated with increased intratumoral T and natural killer cell number and activation. Combination of TAK-981 with anti-PD1 or anti-CTLA4 antibodies improved the survival of mice bearing syngeneic CT26 and MC38 tumors. In conclusion, TAK-981 is a first-in-class SUMOylation inhibitor that promotes antitumor immune responses through activation of IFN1 signaling. TAK-981 is currently being studied in phase 1 clinical trials (NCT03648372, NCT04074330, NCT04776018, and NCT04381650) for the treatment of patients with solid tumors and lymphomas.


Subject(s)
Immunity , Sumoylation
3.
Nat Chem Biol ; 13(11): 1164-1171, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28892090

ABSTRACT

Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.


Subject(s)
Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Small Ubiquitin-Related Modifier Proteins/antagonists & inhibitors , Sumoylation , Cell Proliferation/drug effects , Chromosome Segregation/drug effects , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc , Humans , Mitosis/drug effects , Neoplasms/genetics , Neoplasms/pathology , Protein Processing, Post-Translational , Tumor Cells, Cultured
4.
J Biomol Screen ; 20(8): 957-64, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25924619

ABSTRACT

Gene knockdown by small interfering RNA (siRNA) has been used extensively to investigate the function of genes in targeted and genome-wide studies. One of the primary challenges of siRNA studies of any scale is to achieve sufficient gene knockdown to produce the biological changes that lead to measurable phenotypes. Reverse, lipid-based transfection efficiency minimally requires the optimization of the following parameters: cell number, knockdown duration, siRNA oligonucleotide concentration, type/brand of transfection lipid, and transfection lipid concentration. In this study, we describe a methodology to utilize the flexibility and low-volume range of the Echo acoustic liquid handler to rapidly screen a matrix of transfection conditions. The matrix includes six different transfection lipids from three separate vendors across a broad range of concentrations. Our results validate acoustic liquid transfer for the delivery of siRNAs and transfection reagents. Finally, this methodology is applied to rapidly optimize transfection conditions across many tissue culture cell lines derived from various originating tissues.


Subject(s)
Gene Transfer Techniques , RNA, Small Interfering/genetics , Transfection/methods , Cell Line, Tumor , Cell Survival , Gene Knockdown Techniques , Humans , Reproducibility of Results
5.
Mol Cancer Ther ; 13(6): 1625-35, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24672057

ABSTRACT

MLN4924 is an investigational small-molecule inhibitor of the Nedd8-activating enzyme currently in phase I clinical trials. MLN4924 induces DNA damage via rereplication in most cell lines. This distinct mechanism of DNA damage may affect its ability to combine with standard-of-care agents and may affect the clinical development of MLN4924. As such, we studied its interaction with other DNA-damaging agents. Mitomycin C, cisplatin, cytarabine, UV radiation, SN-38, and gemcitabine demonstrated synergy in combination with MLN4924 in vitro. The combination of mitomycin C and MLN4924 was shown to be synergistic in a mouse xenograft model. Importantly, depletion of genes within the ataxia telangiectasia and Rad3 related (ATR) and BRCA1/BRCA2 pathways, chromatin modification, and transcription-coupled repair reduced the synergy between mitomycin C and MLN4924. In addition, comet assay demonstrated increased DNA strand breaks with the combination of MLN4924 and mitomycin C. Our data suggest that mitomycin C causes stalled replication forks, which when combined with rereplication induced by MLN4924 results in frequent replication fork collisions, leading to cell death. This study provides a straightforward approach to understand the mechanism of synergy, which may provide useful information for the clinical development of these combinations.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Cyclopentanes/administration & dosage , Drug Synergism , Mitomycin/administration & dosage , Pyrimidines/administration & dosage , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Animals , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , Cell Line, Tumor , Chromatin/drug effects , Chromatin/genetics , DNA Damage/drug effects , Humans , Mice , Ubiquitin-Activating Enzymes/genetics , Ultraviolet Rays , Xenograft Model Antitumor Assays
6.
Cancer Res ; 73(1): 225-34, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23100467

ABSTRACT

MLN4924 is an investigational small-molecule inhibitor of the NEDD8-activating enzyme (NAE) in phase I clinical trials. NAE inhibition prevents the ubiquitination and proteasomal degradation of substrates for cullin-RING ubiquitin E3 ligases that support cancer pathophysiology, but the genetic determinants conferring sensitivity to NAE inhibition are unknown. To address this gap in knowledge, we conducted a genome-wide siRNA screen to identify genes and pathways that affect the lethality of MLN4924 in melanoma cells. Of the 154 genes identified, approximately one-half interfered with components of the cell cycle, apoptotic machinery, ubiquitin system, and DNA damage response pathways. In particular, genes involved in DNA replication, p53, BRCA1/BRCA2, transcription-coupled repair, and base excision repair seemed to be important for MLN4924 lethality. In contrast, genes within the G(2)-M checkpoint affected sensitivity to MLN4924 in colon cancer cells. Cell-cycle analysis in melanoma cells by flow cytometry following RNAi-mediated silencing showed that MLN4924 prevented the transition of cells from S-G(2) phase after induction of rereplication stress. Our analysis suggested an important role for the p21-dependent intra-S-phase checkpoint and extensive rereplication, whereas the ATR-dependent intra-S-phase checkpoint seemed to play a less dominant role. Unexpectedly, induction of the p21-dependent intra-S-phase checkpoint seemed to be independent of both Cdt1 stabilization and ATR signaling. Collectively, these data enhance our understanding of the mechanisms by which inhibition of NEDD8-dependent ubiquitination causes cell death, informing clinical development of MLN4924.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclopentanes/pharmacology , DNA Damage/drug effects , Melanoma/metabolism , Pyrimidines/pharmacology , Ubiquitins/metabolism , Blotting, Western , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Flow Cytometry , Humans , NEDD8 Protein , Polymerase Chain Reaction
7.
Sci Signal ; 5(214): ra19, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22394561

ABSTRACT

Epithelial cells respond to growth factors including epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), and insulin. Using high-content immunofluorescence microscopy, we quantitated differences in signaling networks downstream of EGF, which stimulated proliferation of mammary epithelial cells, and insulin or IGF-1, which enhanced the proliferative response to EGF but did not stimulate proliferation independently. We found that the abundance of the cyclin-dependent kinase inhibitors p21Cip1 and p57Kip2 increased in response to IGF-1 or insulin but decreased in response to EGF. Depletion of p57Kip2, but not p21Cip1, rendered IGF-1 or insulin sufficient to induce cellular proliferation in the absence of EGF. Signaling through the PI3K (phosphatidylinositol 3-kinase)-Akt-mTOR (mammalian target of rapamycin) pathway was necessary and sufficient for the increase in p57Kip2, whereas MEK [mitogen-activated or extracellular signal-regulated protein kinase (ERK) kinase]-ERK activity suppressed this increase, forming a regulatory circuit that limited proliferation in response to unaccompanied Akt activity. Knockdown of p57Kip2 enhanced the proliferative phenotype induced by tumor-associated PI3K mutant variants and released mammary epithelial acini from growth arrest during morphogenesis in three-dimensional culture. These results provide a potential explanation for the context-dependent proliferative activities of insulin and IGF-1 and for the finding that the CDKN1C locus encoding p57Kip2 is silenced in many breast cancers, which frequently show hyperactivation of the PI3K pathway. The status of p57Kip2 may thus be an important factor to assess when considering targeted therapy against the ERK or PI3K pathways.


Subject(s)
Cell Proliferation , Epidermal Growth Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Insulin-Like Growth Factor I/pharmacology , Mammary Glands, Human/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p57 , Humans , Mammary Glands, Human/chemistry
8.
Mol Cell Proteomics ; 10(11): M111.009183, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21873567

ABSTRACT

Cullin-RING ubiquitin ligases (CRLs) are responsible for the ubiquitination of many cellular proteins, thereby targeting them for proteasomal degradation. In most cases the substrates of the CRLs have not been identified, although many of those that are known have cancer relevance. MLN4924, an investigational small molecule that is a potent and selective inhibitor of the Nedd8-activating enzyme (NAE), is currently being explored in Phase I clinical trials. Inhibition of Nedd8-activating enzyme by MLN4924 prevents the conjugation of cullin proteins with NEDD8, resulting in inactivation of the entire family of CRLs. We have performed stable isotope labeling with amino acids in cell culture analysis of A375 melanoma cells treated with MLN4924 to identify new CRL substrates, confidently identifying and quantitating 5122-6012 proteins per time point. Proteins such as MLX, EID1, KLF5, ORC6L, MAGEA6, MORF4L2, MRFAP1, MORF4L1, and TAX1BP1 are rapidly stabilized by MLN4924, suggesting that they are novel CRL substrates. Proteins up-regulated at later times were also identified and siRNA against their corresponding genes were used to evaluate their influence on MLN4924-induced cell death. Thirty-eight proteins were identified as being particularly important for the cytotoxicity of MLN4924. Strikingly, these proteins had roles in cell cycle, DNA damage repair, and ubiquitin transfer. Therefore, the combination of RNAi with stable isotope labeling with amino acids in cell culture provides a paradigm for understanding the mechanism of action of novel agents affecting the ubiquitin proteasome system and a path to identifying mechanistic biomarkers.


Subject(s)
Cyclopentanes/pharmacology , Proteome/metabolism , Pyrimidines/pharmacology , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Kinetics , Phenotype , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , Proteome/genetics , Proteomics , RNA Interference , Ubiquitin-Activating Enzymes/metabolism , Ubiquitination
9.
Cancer Res ; 70(11): 4318-26, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20460535

ABSTRACT

Multiple pathways have been proposed to explain how proteasome inhibition induces cell death, but mechanisms remain unclear. To approach this issue, we performed a genome-wide siRNA screen to evaluate the genetic determinants that confer sensitivity to bortezomib (Velcade (R); PS-341). This screen identified 100 genes whose knockdown affected lethality to bortezomib and to a structurally diverse set of other proteasome inhibitors. A comparison of three cell lines revealed that 39 of 100 genes were commonly linked to cell death. We causally linked bortezomib-induced cell death to the accumulation of ASF1B, Myc, ODC1, Noxa, BNIP3, Gadd45alpha, p-SMC1A, SREBF1, and p53. Our results suggest that proteasome inhibition promotes cell death primarily by dysregulating Myc and polyamines, interfering with protein translation, and disrupting essential DNA damage repair pathways, leading to programmed cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Cell Death/drug effects , Protease Inhibitors/pharmacology , Proteasome Inhibitors , Pyrazines/pharmacology , RNA, Small Interfering/genetics , Bortezomib , Cell Death/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , DNA Damage , Gene Knockdown Techniques , HCT116 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Protein Serine-Threonine Kinases/biosynthesis , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-myc/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Ribosomes/drug effects , TOR Serine-Threonine Kinases , Transfection
10.
Proc Natl Acad Sci U S A ; 107(8): 3698-703, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20133671

ABSTRACT

Gene expression signatures are used in the clinic as prognostic tools to determine the risk of individual patients with localized breast tumors developing distant metastasis. We lack a clear understanding, however, of whether these correlative biomarkers link to a common biological network that regulates metastasis. We find that the c-MYC oncoprotein coordinately regulates the expression of 13 different "poor-outcome" cancer signatures. In addition, functional inactivation of MYC in human breast cancer cells specifically inhibits distant metastasis in vivo and invasive behavior in vitro of these cells. These results suggest that MYC oncogene activity (as marked by "poor-prognosis" signature expression) may be necessary for the translocation of poor-outcome human breast tumors to distant sites.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism , Breast Neoplasms/genetics , Cell Movement/genetics , Female , Gene Expression Profiling , Humans , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Prognosis
11.
Proc Natl Acad Sci U S A ; 104(10): 3787-92, 2007 Mar 06.
Article in English | MEDLINE | ID: mdl-17360431

ABSTRACT

The formation of a lumen in three-dimensional mammary epithelial acinar structures in vitro involves selective apoptosis of centrally localized cells that lack matrix attachment. Similarly, apoptosis is induced by forced detachment of mammary epithelial cells from matrix, a process referred to as anoikis. Through microarray analysis, we found that mRNA levels of the proapoptotic BH3-only protein Bmf are up-regulated during both anoikis and acinar morphogenesis. Importantly, down-regulation of Bmf expression by small interfering RNAs is sufficient to prevent anoikis and acinar cell death and promote anchorage-independent growth to a similar extent as down-regulation of another BH3-only protein, Bim, which was previously shown to be required for these processes. Knockdown of the BH3-only proteins Bad or Bid does not suppress anoikis or luminal apoptosis or promote anchorage-independent growth, but protects from other defined apoptotic stimuli, indicating specificity of BH3-only function. Bmf mRNA is significantly up-regulated upon loss of matrix attachment or disruption of the actin cytoskeleton, but not in response to several other stresses. Interestingly, constitutive activation of the Mek/Erk or phosphatidylinositol 3-kinase/Akt pathways suppresses the transcriptional up-regulation of Bmf during anoikis. Thus, Bmf is a central mediator of anoikis in mammary cells and a target of oncogenes that contribute to the progression of glandular epithelial tumors. Finally, Bmf is expressed during involution of the mouse mammary gland, suggesting that Bmf may also critically contribute to developmental processes in vivo.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Anoikis , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Mammary Neoplasms, Animal/metabolism , Morphogenesis , Animals , BH3 Interacting Domain Death Agonist Protein/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Cytoskeleton/metabolism , Disease Progression , Humans , Mice , bcl-Associated Death Protein/metabolism
13.
Int J Biochem Cell Biol ; 35(7): 1085-97, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12672479

ABSTRACT

3-Hydroxyanthranilic acid 3,4-dioxygenase (EC 1.13.11.6; HADO) was purified to homogeneity from beef liver with the use of two dye columns (Cibacron Blue and Reactive Green 19) and hydroxyapatite. Two active peaks of enzyme were isolated from the hydroxyapatite column or by nondenaturing chromatofocusing of the enzyme prior to hydroxyapatite. The two active forms moved with different electrophoretic mobilities when they were subjected to nondenaturing polyacrylamide gel electrophoresis, regardless of the method of isolation. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), however, these species had apparently identical mobilities and have, therefore, close molecular mass. Analysis by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry gave them a molecular mass of 32566 and 32515 Da, respectively, for the species with apparent pI values of 5.60 and 4.98, respectively, suggesting that they differ only in the presence or absence of the iron cofactor. The N-terminal group appears to be blocked as no amino-terminal sequence was possible from direct Edman degradation. A new inactivator of the enzyme, 6-chloro-3-hydroxyanthranilic acid, was synthesized and was shown to exhibit time-dependent inactivation. A possible mechanism for inactivation is proposed.


Subject(s)
Dioxygenases , Liver/enzymology , Oxygenases/isolation & purification , 3-Hydroxyanthranilate 3,4-Dioxygenase , Animals , Cattle , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Kinetics , Oxygenases/antagonists & inhibitors , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Proc Natl Acad Sci U S A ; 99(3): 1461-6, 2002 Feb 05.
Article in English | MEDLINE | ID: mdl-11830665

ABSTRACT

Although the biochemical targets of most drugs are known, the biological consequences of their actions are typically less well understood. In this study, we have used two whole-genome technologies in Saccharomyces cerevisiae to determine the cellular impact of the proteasome inhibitor PS-341. By combining population genomics, the screening of a comprehensive panel of bar-coded mutant strains, and transcript profiling, we have identified the genes and pathways most affected by proteasome inhibition. Many of these function in regulated protein degradation or a subset of mitotic activities. In addition, we identified Rpn4p as the transcription factor most responsible for the cell's ability to compensate for proteasome inhibition. Used together, these complementary technologies provide a general and powerful means to elucidate the cellular ramifications of drug treatment.


Subject(s)
Boronic Acids/pharmacology , Cysteine Endopeptidases/metabolism , Genome, Fungal , Genomics/methods , Multienzyme Complexes/metabolism , Protease Inhibitors/pharmacology , Pyrazines/pharmacology , Saccharomyces cerevisiae/genetics , Bortezomib , Cell Nucleus/genetics , Cell Nucleus/ultrastructure , DNA Repair , DNA, Fungal/genetics , Fungal Proteins/metabolism , Gene Deletion , Gene Expression Profiling , Microbial Sensitivity Tests , Oligonucleotide Array Sequence Analysis , Proteasome Endopeptidase Complex , RNA, Fungal/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...