Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660801

ABSTRACT

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Subject(s)
CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System , Signal Transduction , Animals , Female , Humans , Male , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Hypoxia/metabolism , Hypoxia/complications , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/genetics
2.
Cell Commun Signal ; 22(1): 23, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195510

ABSTRACT

Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Endothelial Cells , Gene Expression Profiling , Transcriptome , Tumor Microenvironment
3.
Nat Commun ; 14(1): 7009, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919320

ABSTRACT

Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Humans , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , KRIT1 Protein/genetics , Proto-Oncogene Proteins/genetics , Apoptosis Regulatory Proteins/genetics , Mutation , Sequence Analysis, DNA
4.
Brain Sci ; 13(9)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37759937

ABSTRACT

Cerebral cavernous malformation (CCM) is a common cerebrovascular malformation causing intracranial hemorrhage, seizures, and focal neurologic deficits. A unique CCM lesional inflammatory microenvironment has been shown to influence the clinical course of the disease. This review addresses the inflammatory cell infiltrate in the CCM lesion and the role of a defined antigen-driven immune response in pathogenicity. We summarize immune mechanisms associated with the loss of the CCM gene and disease progression, including the potential role of immunothrombosis. We also review evidence of circulating inflammatory biomarkers associated with CCM disease and its clinical activity. We articulate future directions for this research, including the role of individual cell type contributions to the immune response in CCM, single cell transcriptomics of inflammatory cells, biomarker development, and therapeutic implications. The concepts are applicable for developing diagnostic and treatment strategies for CCM and for studying other neurovascular diseases.

5.
Stroke ; 54(11): 2906-2917, 2023 11.
Article in English | MEDLINE | ID: mdl-37746705

ABSTRACT

BACKGROUND: Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions. METHODS: We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs. RESULTS: We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs. CONCLUSIONS: Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Animals , Humans , Adult , Mice , Hemangioma, Cavernous, Central Nervous System/drug therapy , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Endothelial Cells/metabolism , Sirolimus/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism
7.
Commun Med (Lond) ; 3(1): 35, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36869161

ABSTRACT

BACKGROUND: Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a permissive gut microbiome, was identified in patients who develop CAs, favoring lipid polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels of proteins reflecting angiogenesis and inflammation were also previously correlated with CA and CA with symptomatic hemorrhage. METHODS: The plasma metabolome of CA patients and CA patients with symptomatic hemorrhage was assessed using liquid-chromatography mass spectrometry. Differential metabolites were identified using partial least squares-discriminant analysis (p < 0.05, FDR corrected). Interactions between these metabolites and the previously established CA transcriptome, microbiome, and differential proteins were queried for mechanistic relevance. Differential metabolites in CA patients with symptomatic hemorrhage were then validated in an independent, propensity matched cohort. A machine learning-implemented, Bayesian approach was used to integrate proteins, micro-RNAs and metabolites to develop a diagnostic model for CA patients with symptomatic hemorrhage. RESULTS: Here we identify plasma metabolites, including cholic acid and hypoxanthine distinguishing CA patients, while arachidonic and linoleic acids distinguish those with symptomatic hemorrhage. Plasma metabolites are linked to the permissive microbiome genes, and to previously implicated disease mechanisms. The metabolites distinguishing CA with symptomatic hemorrhage are validated in an independent propensity-matched cohort, and their integration, along with levels of circulating miRNAs, enhance the performance of plasma protein biomarkers (up to 85% sensitivity and 80% specificity). CONCLUSIONS: Plasma metabolites reflect CAs and their hemorrhagic activity. A model of their multiomic integration is applicable to other pathologies.


Cavernous angiomas (CAs) are clusters of abnormal blood vessels found in the brain or spinal cord. A blood test that could identify people with CAs that have recently bled would help determine who need surgery or closer medical monitoring. We looked at the blood of people with CAs to compare the levels of metabolites, a type of small molecule produced within the body, in those who had recently bled and those who had not. We found that some metabolites may contribute to CA and have an impact on CA symptoms. Monitoring the levels of these metabolites can determine whether there had been a recent bleed. In the future, drugs or other therapies could be developed that would block or change the levels of these molecules and possibly be used to treat CA disease.

8.
Transl Stroke Res ; 14(4): 513-529, 2023 08.
Article in English | MEDLINE | ID: mdl-35715588

ABSTRACT

Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.


Subject(s)
Circulating MicroRNA , Hemangioma, Cavernous, Central Nervous System , MicroRNAs , Humans , Mice , Animals , Bayes Theorem , Hemangioma, Cavernous, Central Nervous System/genetics , KRIT1 Protein/genetics , MicroRNAs/genetics
9.
FASEB J ; 36(12): e22629, 2022 12.
Article in English | MEDLINE | ID: mdl-36349990

ABSTRACT

ß1 integrins are important in blood vessel formation and function, finely tuning the adhesion of endothelial cells to each other and to the extracellular matrix. The role of integrins in the vascular disease, cerebral cavernous malformation (CCM) has yet to be explored in vivo. Endothelial loss of the gene KRIT1 leads to brain microvascular defects, resulting in debilitating and often fatal consequences. We tested administration of a monoclonal antibody that enforces the active ß1 integrin conformation, (clone 9EG7), on a murine neonatal CCM mouse model, Krit1flox/flox ;Pdgfb-iCreERT2 (Krit1ECKO ), and on KRIT1-silenced human umbilical vein endothelial cells (HUVECs). In addition, endothelial deletion of the master regulator of integrin activation, Talin 1 (Tln1), in Krit1ECKO mice was performed to assess the effect of completely blocking endothelial integrin activation on CCM. Treatment with 9EG7 reduced lesion burden in the Krit1ECKO model and was accompanied by a strong reduction in the phosphorylation of the ROCK substrate, myosin light chain (pMLC), in both retina and brain endothelial cells. Treatment of KRIT1-silenced HUVECs with 9EG7 in vitro stabilized cell-cell junctions. Overnight treatment of HUVECs with 9EG7 resulted in significantly reduced total surface expression of ß1 integrin, which was associated with reduced pMLC levels, supporting our in vivo findings. Genetic blockade of integrin activation by Tln1ECKO enhanced bleeding and did not reduce CCM lesion burden in Krit1ECKO mice. In sum, targeting ß1 integrin with an activated-specific antibody reduces acute murine CCM lesion development, which we found to be associated with suppression of endothelial ROCK activity.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Animals , Humans , Mice , Hemangioma, Cavernous, Central Nervous System/metabolism , Integrin beta1/metabolism , Antibodies, Monoclonal/metabolism , Integrins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Microtubule-Associated Proteins/metabolism
12.
J Magn Reson Imaging ; 55(5): 1440-1449, 2022 05.
Article in English | MEDLINE | ID: mdl-34558140

ABSTRACT

BACKGROUND: Cerebral cavernous angioma (CA) is a capillary vasculopathy affecting more than a million Americans with a small fraction of cases demonstrating lesional bleed or growth with major clinical sequelae. Perfusion and permeability are fundamental features of CA pathophysiology, but their role as prognostic biomarkers is unclear. PURPOSE: To investigate whether perfusion or permeability lesional descriptors derived from dynamic contrast-enhanced quantitative perfusion (DCEQP) magnetic resonance imaging (MRI) can predict subsequent lesional bleed/growth in the year following imaging. STUDY TYPE: Single-site case-controlled study. SUBJECTS: Two hundred and five consecutively enrolled patients (63.4% female). FIELD STRENGTH/SEQUENCE: Three-Tesla/T1 -mapping with contrast-enhanced dynamic two-dimensional (2D) spoiled gradient recalled acquisition (SPGR) sequences. ASSESSMENT: Prognostic associations with bleed/growth (present or absent) in the following year were assessed in 745 CA lesions evaluated by DCEQP in the 205 patients in relation to lesional descriptors calculated from permeability and perfusion maps. A subgroup of 30 cases also underwent peripheral blood collection at the time of DCEQP scans and assays of plasma levels of soluble CD14, IL-1ß, VEGF, and soluble ROBO4 proteins, whose weighted combination had been previously reported in association with future CA bleeding. STATISTICAL TESTS: Mann-Whitney U-test for univariate analyses. Logistic regression models minimizing the Bayesian information criterion (BIC), testing sensitivity and specificity (receiver operating characteristic curves) of weighted combinations of parameters. RESULTS: The best prognostic biomarker for lesional bleed or growth included brainstem lesion location, mean lesional permeability, and low-value perfusion cluster mean (BIC = 201.5, sensitivity = 77%, specificity = 72%, P < 0.05). Adding a previously published prognostic plasma protein biomarker improved the performance of the imaging model (sensitivity = 100%, specificity = 88%, P < 0.05). DATA CONCLUSION: A combination of MRI-based descriptors reflecting higher lesional permeability and lower perfusion cluster may potentially predict future bleed/growth in CAs. The sensitivity and specificity of the prognostic imaging biomarker can be enhanced when combined with brainstem lesion location and a plasma protein biomarker of CA hemorrhage. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 5.


Subject(s)
Hemangioma, Cavernous , Magnetic Resonance Imaging , Bayes Theorem , Biomarkers , Contrast Media , Female , Hemangioma, Cavernous/complications , Hemorrhage/complications , Humans , Magnetic Resonance Imaging/methods , Male , Perfusion , Permeability
14.
J Cereb Blood Flow Metab ; 41(11): 2944-2956, 2021 11.
Article in English | MEDLINE | ID: mdl-34039038

ABSTRACT

Cavernous angiomas with symptomatic hemorrhage (CASH) have a high risk of rebleeding, and hence an accurate diagnosis is needed. With blood flow and vascular leak as established mechanisms, we analyzed perfusion and permeability derivations of dynamic contrast-enhanced quantitative perfusion (DCEQP) MRI in 745 lesions of 205 consecutive patients. Thirteen respective derivations of lesional perfusion and permeability were compared between lesions that bled within a year prior to imaging (N = 86), versus non-CASH (N = 659) using machine learning and univariate analyses. Based on logistic regression and minimizing the Bayesian information criterion (BIC), the best diagnostic biomarker of CASH within the prior year included brainstem lesion location, sporadic genotype, perfusion skewness, and high-perfusion cluster area (BIC = 414.9, sensitivity = 74%, specificity = 87%). Adding a diagnostic plasma protein biomarker enhanced sensitivity to 100% and specificity to 85%. A slightly modified derivation achieved similar accuracy (BIC = 321.6, sensitivity = 80%, specificity = 82%) in the cohort where CASH occurred 3-12 months prior to imaging after signs of hemorrhage would have disappeared on conventional MRI sequences. Adding the same plasma biomarker enhanced sensitivity to 100% and specificity to 87%. Lesional blood flow on DCEQP may distinguish CASH after hemorrhagic signs on conventional MRI have disappeared and are enhanced in combination with a plasma biomarker.


Subject(s)
Biomarkers/blood , Brain Stem/pathology , Hemangioma, Cavernous/blood , Hemangioma, Cavernous/diagnosis , Hemorrhage/diagnosis , Perfusion Imaging/methods , Adult , Bayes Theorem , Brain Stem/blood supply , Brain Stem/diagnostic imaging , Case-Control Studies , Cerebrovascular Circulation/physiology , Cohort Studies , Contrast Media/administration & dosage , Female , Genotype , Hemangioma, Cavernous/complications , Hemorrhage/epidemiology , Hemorrhage/etiology , Humans , Logistic Models , Machine Learning , Magnetic Resonance Imaging/methods , Male , Middle Aged , Perfusion , Permeability , Sensitivity and Specificity
15.
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34043589

ABSTRACT

Cerebral cavernous malformations (CCMs) are common neurovascular lesions caused by loss-of-function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3), and generally regarded as an endothelial cell-autonomous disease. Here we reported that proliferative astrocytes played a critical role in CCM pathogenesis by serving as a major source of VEGF during CCM lesion formation. An increase in astrocyte VEGF synthesis is driven by endothelial nitric oxide (NO) generated as a consequence of KLF2- and KLF4-dependent elevation of eNOS in CCM endothelium. The increased brain endothelial production of NO stabilized HIF-1α in astrocytes, resulting in increased VEGF production and expression of a "hypoxic" program under normoxic conditions. We showed that the upregulation of cyclooxygenase-2 (COX-2), a direct HIF-1α target gene and a known component of the hypoxic program, contributed to the development of CCM lesions because the administration of a COX-2 inhibitor significantly prevented the progression of CCM lesions. Thus, non-cell-autonomous crosstalk between CCM endothelium and astrocytes propels vascular lesion development, and components of the hypoxic program represent potential therapeutic targets for CCMs.


Subject(s)
Astrocytes/physiology , Hemangioma, Cavernous, Central Nervous System/physiopathology , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Astrocytes/pathology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism , Hemangioma, Cavernous, Central Nervous System/etiology , Hemangioma, Cavernous, Central Nervous System/pathology , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Knockout , Models, Neurological , Mutation , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/biosynthesis
16.
Elife ; 102021 05 20.
Article in English | MEDLINE | ID: mdl-34013885

ABSTRACT

Mosaic inactivation of CCM2 in humans causes cerebral cavernous malformations (CCMs) containing adjacent dilated blood-filled multi-cavernous lesions. We used CRISPR-Cas9 mutagenesis to induce mosaic inactivation of zebrafish ccm2 resulting in a novel lethal multi-cavernous lesion in the embryonic caudal venous plexus (CVP) caused by obstruction of blood flow by intraluminal pillars. These pillars mimic those that mediate intussusceptive angiogenesis; however, in contrast to the normal process, the pillars failed to fuse to split the pre-existing vessel in two. Abortive intussusceptive angiogenesis stemmed from mosaic inactivation of ccm2 leading to patchy klf2a overexpression and resultant aberrant flow signaling. Surviving adult fish manifested histologically typical hemorrhagic CCM. Formation of mammalian CCM requires the flow-regulated transcription factor KLF2; fish CCM and the embryonic CVP lesion failed to form in klf2a null fish indicating a common pathogenesis with the mammalian lesion. These studies describe a zebrafish CCM model and establish a mechanism that can explain the formation of characteristic multi-cavernous lesions.


Subject(s)
Brain/blood supply , Hemangioma, Cavernous, Central Nervous System/genetics , Muscle Proteins/genetics , Neovascularization, Pathologic/genetics , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , Cerebrovascular Circulation , Disease Models, Animal , Gene Expression Regulation, Developmental , Gene Silencing , Genetic Predisposition to Disease , Hemangioma, Cavernous, Central Nervous System/embryology , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/physiopathology , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mosaicism , Muscle Proteins/metabolism , Phenotype , Signal Transduction , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism
17.
Nature ; 594(7862): 271-276, 2021 06.
Article in English | MEDLINE | ID: mdl-33910229

ABSTRACT

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/genetics , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Mutation , Neoplasms/genetics , Animals , Animals, Newborn , Class I Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gain of Function Mutation , Hemangioma, Cavernous, Central Nervous System/blood supply , Hemangioma, Cavernous, Central Nervous System/metabolism , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Loss of Function Mutation , MAP Kinase Kinase Kinase 3/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Neoplasms/blood supply , Neoplasms/pathology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
18.
Neurosurgery ; 88(3): 686-697, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33469662

ABSTRACT

BACKGROUND: Cerebral cavernous angioma (CA) is a capillary microangiopathy predisposing more than a million Americans to premature risk of brain hemorrhage. CA with recent symptomatic hemorrhage (SH), most likely to re-bleed with serious clinical sequelae, is the primary focus of therapeutic development. Signaling aberrations in CA include proliferative dysangiogenesis, blood-brain barrier hyperpermeability, inflammatory/immune processes, and anticoagulant vascular domain. Plasma levels of molecules reflecting these mechanisms and measures of vascular permeability and iron deposition on magnetic resonance imaging are biomarkers that have been correlated with CA hemorrhage. OBJECTIVE: To optimize these biomarkers to accurately diagnose cavernous angioma with symptomatic hemorrhage (CASH), prognosticate the risk of future SH, and monitor cases after a bleed and in response to therapy. METHODS: Additional candidate biomarkers, emerging from ongoing mechanistic and differential transcriptome studies, would further enhance the sensitivity and specificity of diagnosis and prediction of CASH. Integrative combinations of levels of plasma proteins and characteristic micro-ribonucleic acids may further strengthen biomarker associations. We will deploy advanced statistical and machine learning approaches for the integration of novel candidate biomarkers, rejecting noncorrelated candidates, and determining the best clustering and weighing of combined biomarker contributions. EXPECTED OUTCOMES: With the expertise of leading CA researchers, this project anticipates the development of future blood tests for the diagnosis and prediction of CASH to clinically advance towards precision medicine. DISCUSSION: The project tests a novel integrational approach of biomarker development in a mechanistically defined cerebrovascular disease with a relevant context of use, with an approach applicable to other neurological diseases with similar pathobiologic features.


Subject(s)
Brain Neoplasms/blood , Cerebral Hemorrhage/blood , Hemangioma, Cavernous, Central Nervous System/blood , Hemangioma, Cavernous/blood , Biomarkers/blood , Brain Neoplasms/diagnostic imaging , Capillary Permeability/physiology , Cerebral Hemorrhage/diagnostic imaging , Female , Hemangioma, Cavernous/diagnostic imaging , Hemangioma, Cavernous, Central Nervous System/diagnostic imaging , Humans , Inflammation Mediators/blood , Longitudinal Studies , Machine Learning , Magnetic Resonance Imaging/methods , Male , Prognosis , Transcriptome/physiology
19.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: mdl-33301422

ABSTRACT

Propranolol, a pleiotropic ß-adrenergic blocker, has been anecdotally reported to reduce cerebral cavernous malformations (CCMs) in humans. However, propranolol has not been rigorously evaluated in animal models, nor has its mechanism of action in CCM been defined. We report that propranolol or its S(-) enantiomer dramatically reduced embryonic venous cavernomas in ccm2 mosaic zebrafish, whereas R-(+)-propranolol, lacking ß antagonism, had no effect. Silencing of the ß1, but not ß2, adrenergic receptor mimicked the beneficial effects of propranolol in a zebrafish CCM model, as did the ß1-selective antagonist metoprolol. Thus, propranolol ameliorated cavernous malformations by ß1 adrenergic antagonism in zebrafish. Oral propranolol significantly reduced lesion burden in 2 chronic murine models of the exceptionally aggressive Pdcd10/Ccm3 form of CCM. Propranolol or other ß1-selective antagonists may be beneficial in CCM disease.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/adverse effects , Hemangioma, Cavernous, Central Nervous System , Propranolol/pharmacology , Adrenergic beta-1 Receptor Antagonists/pharmacology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Female , G-Protein-Coupled Receptor Kinase 2/genetics , G-Protein-Coupled Receptor Kinase 2/metabolism , Hemangioma, Cavernous, Central Nervous System/chemically induced , Hemangioma, Cavernous, Central Nervous System/drug therapy , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
20.
Angiogenesis ; 23(4): 651-666, 2020 11.
Article in English | MEDLINE | ID: mdl-32710309

ABSTRACT

Cerebral cavernous malformations (CCMs) are ectatic capillary-venous malformations that develop in approximately 0.5% of the population. Patients with CCMs may develop headaches, focal neurologic deficits, seizures, and hemorrhages. While symptomatic CCMs, depending upon the anatomic location, can be surgically removed, there is currently no pharmaceutical therapy to treat CCMs. Several mouse models have been developed to better understand CCM pathogenesis and test therapeutics. The most common mouse models induce a large CCM burden that is anatomically restricted to the cerebellum and contributes to lethality in the early days of life. These inducible models thus have a relatively short period for drug administration. We developed an inducible CCM3 mouse model that develops CCMs after weaning and provides a longer period for potential therapeutic intervention. Using this new model, three recently proposed CCM therapies, fasudil, tempol, vitamin D3, and a combination of the three drugs, failed to substantially reduce CCM formation when treatment was administered for 5 weeks, from postnatal day 21 (P21) to P56. We next restricted Ccm3 deletion to the brain vasculature and provided greater time (121 days) for CCMs to develop chronic hemorrhage, recapitulating the human lesions. We also developed the first model of acute CCM hemorrhage by injecting mice harboring CCMs with lipopolysaccharide. These efficient models will enable future drug studies to more precisely target clinically relevant features of CCM disease: CCM formation, chronic hemorrhage, and acute hemorrhage.


Subject(s)
Hemangioma, Cavernous, Central Nervous System/pathology , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Acute Disease , Animals , Apoptosis Regulatory Proteins/deficiency , Brain/blood supply , Brain/pathology , Cholecalciferol/pharmacology , Chronic Disease , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Gene Deletion , Hemangioma, Cavernous, Central Nervous System/complications , Hemorrhage/complications , Lipopolysaccharides , Mice, Inbred C57BL , Models, Biological , Phenotype , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...