Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Vet Immunol Immunopathol ; 157(1-2): 31-41, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24268690

ABSTRACT

To date, very little is known about the functional characteristics of the four published canine IgG subclasses. It is not clear how each subclass engages the immune system via complement-dependent cytotoxicity (CDC) or antibody-dependent cell-mediated cytotoxicity (ADCC), or how long each antibody may last in serum. Such information is critical for understanding canine immunology and for the discovery of canine therapeutic monoclonal antibodies. Through both in vitro and ex vivo experiments to evaluate canine Fc's for effector function, complement binding, FcRn binding, and ADCC, we are now able to categorize canine subclasses by function. The subclasses share functional properties with the four human IgG subclasses and are reported herein with their function-based human analog. Canine Fc fusions, canine chimeras, and caninized antibodies were characterized. Canine subclasses A and D appear effector-function negative while subclasses B and C bind canine Fc gamma receptors and are positive for ADCC. All canine subclasses bind the neonatal Fc receptor except subclass C. By understanding canine IgGs in this way, we can apply what is known of human immunology toward translational and veterinary medicine. Thus, this body of work lays the foundation for evaluating canine IgG subclasses for therapeutic antibody development and builds upon the fundamental scholarship of canine immunology.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/immunology , Dogs/immunology , Immunoglobulin G/immunology , Receptors, IgG/immunology , Animals , Cloning, Molecular , Cross Reactions/immunology , Humans , Mice , RNA/chemistry , RNA/genetics , Random Amplified Polymorphic DNA Technique/veterinary , Receptors, IgG/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology
2.
Bioorg Med Chem Lett ; 23(11): 3443-7, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23597790

ABSTRACT

Selective phosphodiesterase 2 (PDE2) inhibitors are shown to have efficacy in a rat model of osteoarthritis (OA) pain. We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of phosphodiesterase 4 (PDE4) inhibitors, while minimizing PDE4 inhibitory activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like binding mode orthogonal to the cAMP-like binding mode found in PDE4. Extensive structure activity relationship studies ultimately led to identification of pyrazolodiazepinone, 22, which was >1000-fold selective for PDE2 over recombinant, full length PDEs 1B, 3A, 3B, 4A, 4B, 4C, 7A, 7B, 8A, 8B, 9, 10 and 11. Compound 22 also retained excellent PDE2 selectivity (241-fold to 419-fold) over the remaining recombinant, full length PDEs, 1A, 4D, 5, and 6. Compound 22 exhibited good pharmacokinetic properties and excellent oral bioavailability (F=78%, rat). In an in vivo rat model of OA pain, compound 22 had significant analgesic activity 1 and 3h after a single, 10 mg/kg, subcutaneous dose.


Subject(s)
Azepines/chemistry , Azirines/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Dihydropyridines/chemistry , Phosphodiesterase Inhibitors/chemistry , Pyrazoles/chemistry , Analgesics/chemistry , Analgesics/pharmacokinetics , Analgesics/therapeutic use , Animals , Azepines/pharmacokinetics , Azepines/therapeutic use , Azirines/pharmacokinetics , Azirines/therapeutic use , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dihydropyridines/pharmacokinetics , Dihydropyridines/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Half-Life , Osteoarthritis/drug therapy , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacokinetics , Phosphodiesterase Inhibitors/therapeutic use , Protein Binding , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 23(11): 3438-42, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23582272

ABSTRACT

We identified potent, selective PDE2 inhibitors by optimizing residual PDE2 activity in a series of PDE4 inhibitors, while simultaneously minimizing PDE4 activity. These newly designed PDE2 inhibitors bind to the PDE2 enzyme in a cGMP-like mode in contrast to the cAMP-like binding mode found in PDE4. Structure activity relationship studies coupled with an inhibitor bound crystal structure in the active site of the catalytic domain of PDE2 identified structural features required to minimize PDE4 inhibition while simultaneously maximizing PDE2 inhibition.


Subject(s)
Azirines/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Dihydropyridines/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , Phosphodiesterase Inhibitors/chemistry , Animals , Azirines/metabolism , Azirines/therapeutic use , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dihydropyridines/metabolism , Dihydropyridines/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Osteoarthritis/drug therapy , Phosphodiesterase Inhibitors/metabolism , Phosphodiesterase Inhibitors/therapeutic use , Protein Binding , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 22(7): 2536-43, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22401863

ABSTRACT

Lipid A is an essential component of the Gram negative outer membrane, which protects the bacterium from attack of many antibiotics. The Lipid A biosynthesis pathway is essential for Gram negative bacterial growth and is unique to these bacteria. The first committed step in Lipid A biosynthesis is catalysis by LpxC, a zinc dependent deacetylase. We show the design of an LpxC inhibitor utilizing a robust model which directed efficient design of picomolar inhibitors. Analysis of physiochemical properties drove design to focus on an optimal lipophilicity profile. Further structure based design took advantage of a conserved water network over the active site, and with the optimal lipophilicity profile, led to an improved LpxC inhibitor with in vivo activity against wild type Pseudomonas aeruginosa.


Subject(s)
Amidohydrolases/chemistry , Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Hydroxamic Acids/chemical synthesis , Pseudomonas aeruginosa/drug effects , Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Catalytic Domain , Drug Design , Enzyme Inhibitors/pharmacology , Hydrophobic and Hydrophilic Interactions , Hydroxamic Acids/pharmacology , Lipid A/metabolism , Microbial Sensitivity Tests , Models, Molecular , Protein Binding , Pseudomonas aeruginosa/enzymology , Structure-Activity Relationship , Water/chemistry
5.
Protein Sci ; 19(4): 753-62, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20120022

ABSTRACT

Human IgG2 antibodies may exist in at least three distinct structural isomers due to disulfide shuffling within the upper hinge region. Antibody interactions with Fc gamma receptors and the complement component C1q contribute to immune effector functions. These interactions could be impacted by the accessibility and structure of the hinge region. To examine the role structural isomers may have on effector functions, a series of cysteine to serine mutations were made on a human IgG2 backbone. We observed structural homogeneity with these mutants and mapped the locations of their disulfide bonds. Importantly, there was no observed difference in binding to any of the Fc gamma receptors or C1q between the mutants and the wild-type IgG2. However, differences were seen in the apparent binding affinity of these antibodies that were dependent on the selection of the secondary detection antibody used.


Subject(s)
Complement C1q/metabolism , Disulfides/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Mutation , Receptors, IgG/metabolism , Amino Acid Sequence , Binding Sites , Cells, Cultured , Complement C1q/chemistry , Disulfides/immunology , Humans , Immunoglobulin G/immunology , Isomerism , Receptors, IgG/chemistry , Structure-Activity Relationship
6.
Protein Expr Purif ; 69(1): 54-63, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19781647

ABSTRACT

Janus-associated kinases (JAKs) play critical roles in cytokine signaling, and have emerged as viable therapeutic targets in inflammation and oncology related diseases. To date, targeting JAK proteins with highly selective inhibitor compounds have remained elusive. We have expressed the active kinase domains for both JAK2 and JAK3 and devised purification protocols to resolve the non-, mono- (Y1007) and diphosphorylated (Y1007 and Y1008) states of JAK2 and non- and monophosphorylated states of JAK3 (Y980). An optimal purified protein yield of 20, 29 and 69mg per 20L cell culture was obtained for the three JAK2 forms, respectively, and 12.2 and 2.3mg per 10L fermentation for the two JAK3 forms allowing detailed biochemical and biophysical studies. To monitor the purification process we developed a novel HPLC activity assay where a sequential order of phosphorylation was observed whereby the first tyrosine residue was completely phosphorylated prior to phosphorylation of the tandem tyrosine residue. A Caliper-based microfluidics assay was used to determine the kinetic parameters (K(m) and k(cat)) for each phosphorylated state, showing that monophosphorylated (Y1007) JAK2 enzyme activity increased 9-fold over that of the nonphosphorylated species, and increased an additional 6-fold for the diphosphorylated (Y1007/Y1008) species, while phosphorylation of JAK3 resulted in a negligible increase in activity. Moreover, crystal structures have been generated for each isolated state of JAK2 and JAK3 with resolutions better than 2.4A. The generation of these reagents has enabled kinetic and structural characterization to inform the design of potent and selective inhibitors of the JAK family.


Subject(s)
Janus Kinase 2/chemistry , Janus Kinase 2/isolation & purification , Janus Kinase 3/chemistry , Janus Kinase 3/isolation & purification , Amino Acid Sequence , Biocatalysis , Chromatography, High Pressure Liquid , Crystallization , Electrophoresis, Polyacrylamide Gel , Fermentation , Humans , Kinetics , Molecular Sequence Data , Phosphorylation , Protein Structure, Tertiary
7.
ACS Chem Biol ; 4(6): 473-83, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19413326

ABSTRACT

As part of our effort to inhibit bacterial fatty acid biosynthesis through the recently validated target biotin carboxylase, we employed a unique combination of two emergent lead discovery strategies. We used both de novo fragment-based drug discovery and virtual screening, which employs 3D shape and electrostatic property similarity searching. We screened a collection of unbiased low-molecular-weight molecules and identified a structurally diverse collection of weak-binding but ligand-efficient fragments as potential building blocks for biotin carboxylase ATP-competitive inhibitors. Through iterative cycles of structure-based drug design relying on successive fragment costructures, we improved the potency of the initial hits by up to 3000-fold while maintaining their ligand-efficiency and desirable physicochemical properties. In one example, hit-expansion efforts resulted in a series of amino-oxazoles with antibacterial activity. These results successfully demonstrate that virtual screening approaches can substantially augment fragment-based screening approaches to identify novel antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbon-Nitrogen Ligases/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Anti-Bacterial Agents/chemistry , Binding Sites , Carbon-Nitrogen Ligases/metabolism , Combinatorial Chemistry Techniques , Enzyme Inhibitors/chemistry , Ligands , Microbial Sensitivity Tests , Molecular Weight , Structure-Activity Relationship
8.
Protein Sci ; 17(10): 1706-18, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18725455

ABSTRACT

Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or "flip-flop" their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF(2)P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.


Subject(s)
Biotin/chemistry , Carbon-Nitrogen Ligases/chemistry , Binding Sites , Carbon-Nitrogen Ligases/antagonists & inhibitors , Catalysis , Crystallization , Crystallography, X-Ray , Escherichia coli/enzymology , Magnesium/chemistry , Nucleotides/chemistry , Pseudomonas aeruginosa/enzymology , Staphylococcus aureus/enzymology
9.
Protein Sci ; 17(3): 450-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18287278

ABSTRACT

The cell wall in Gram-negative bacteria is surrounded by an outer membrane comprised of charged lipopolysaccharide (LPS) molecules that prevent entry of hydrophobic agents into the cell and protect the bacterium from many antibiotics. The hydrophobic anchor of LPS is lipid A, the biosynthesis of which is essential for bacterial growth and viability. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is an essential zinc-dependant enzyme that catalyzes the conversion of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)glucosamine and acetate in the biosynthesis of lipid A, and for this reason, LpxC is an attractive target for antibacterial drug discovery. Here we disclose a 1.9 A resolution crystal structure of LpxC from Pseudomonas aeruginosa (paLpxC) in a complex with the potent BB-78485 inhibitor. To our knowledge, this is the first crystal structure of LpxC with a small-molecule inhibitor that shows antibacterial activity against a wide range of Gram-negative pathogens. Accordingly, this structure can provide important information for lead optimization and rational design of the effective small-molecule LpxC inhibitors for successful treatment of Gram-negative infections.


Subject(s)
Amidohydrolases/chemistry , Anti-Bacterial Agents/chemistry , Models, Molecular , Naphthalenes/chemistry , Sulfonamides/chemistry , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry
10.
Protein Sci ; 17(3): 577-82, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18218712

ABSTRACT

N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential enzyme in aminosugars metabolism and an attractive target for antibiotic drug discovery. GlmU catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), an important precursor in the peptidoglycan and lipopolisaccharide biosynthesis in both Gram-negative and Gram-positive bacteria. Here we disclose a 1.9 A resolution crystal structure of a synthetic small-molecule inhibitor of GlmU from Haemophilus influenzae (hiGlmU). The compound was identified through a high-throughput screening (HTS) configured to detect inhibitors that target the uridyltransferase active site of hiGlmU. The original HTS hit exhibited a modest micromolar potency (IC(50) approximately 18 microM in a racemic mixture) against hiGlmU and no activity against Staphylococcus aureus GlmU (saGlmU). The determined crystal structure indicated that the inhibitor occupies an allosteric site adjacent to the GlcNAc-1-P substrate-binding region. Analysis of the mechanistic model of the uridyltransferase reaction suggests that the binding of this allosteric inhibitor prevents structural rearrangements that are required for the enzymatic reaction, thus providing a basis for structure-guided design of a new class of mechanism-based inhibitors of GlmU.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Benzamides/chemistry , Haemophilus influenzae/enzymology , Nucleotidyltransferases/chemistry , Piperidines/chemistry , Allosteric Site , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Models, Molecular , Protein Binding
11.
Protein Sci ; 16(12): 2657-66, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18029420

ABSTRACT

N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the first step in peptidoglycan biosynthesis in both Gram-positive and Gram-negative bacteria. The products of the GlmU reaction are essential for bacterial survival, making this enzyme an attractive target for antibiotic drug discovery. A series of Haemophilus influenzae GlmU (hiGlmU) structures were determined by X-ray crystallography in order to provide structural and functional insights into GlmU activity and inhibition. The information derived from these structures was combined with biochemical characterization of the K25A, Q76A, D105A, Y103A, V223A, and E224A hiGlmU mutants in order to map these active-site residues to catalytic activity of the enzyme and refine the mechanistic model of the GlmU uridyltransferase reaction. These studies suggest that GlmU activity follows a sequential substrate-binding order that begins with UTP binding noncovalently to the GlmU enzyme. The uridyltransferase active site then remains in an open apo-like conformation until N-acetylglucosamine-1-phosphate (GlcNAc-1-P) binds and induces a conformational change at the GlcNAc-binding subsite. Following the binding of GlcNAc-1-P to the UTP-charged uridyltransferase active site, the non-esterified oxygen of GlcNAc-1-P performs a nucleophilic attack on the alpha-phosphate group of UTP. The new data strongly suggest that the mechanism of phosphotransfer in the uridyltransferase reaction in GlmU is primarily through an associative mechanism with a pentavalent phosphate intermediate and an inversion of stereochemistry. Finally, the structural and biochemical characterization of the uridyltransferase active site and catalytic mechanism described herein provides a basis for the structure-guided design of novel antibacterial agents targeting GlmU activity.


Subject(s)
Haemophilus influenzae/enzymology , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Binding Sites , Catalysis , Crystallography, X-Ray , Ligands , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Conformation , Protein Structure, Tertiary , Uridine/chemistry , Uridine/metabolism , Uridine Triphosphate/metabolism
12.
Biochemistry ; 45(6): 1712-22, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16460018

ABSTRACT

Acetyl-coA carboxylase (ACC) is a central metabolic enzyme that catalyzes the committed step in fatty acid biosynthesis: biotin-dependent conversion of acetyl-coA to malonyl-coA. The bacterial carboxyltransferase (CT) subunit of ACC is a target for the design of novel therapeutics that combat severe, hospital-acquired infections resistant to the established classes of frontline antimicrobials. Here, we present the structures of the bacterial CT subunits from two prevalent nosocomial pathogens, Staphylococcus aureus and Escherichia coli, at a resolution of 2.0 and 3.0 A, respectively. Both structures reveal a small, independent zinc-binding domain that lacks a complement in the primary sequence or structure of the eukaryotic homologue.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Bacteria/enzymology , Carboxyl and Carbamoyl Transferases/metabolism , Zinc/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Cross Infection/enzymology , Crystallography, X-Ray , Escherichia coli/enzymology , Eukaryotic Cells/metabolism , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Folding , Staphylococcus aureus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...