Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 197: 114222, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387850

ABSTRACT

Lipid nanoparticles (LNPs) employing ionizable lipids are the most advanced technology for delivery of RNA, most notably mRNA, to cells. LNPs represent well-defined core-shell particles with efficient nucleic acid encapsulation, low immunogenicity and enhanced efficacy. While much is known about the structure and activity of LNPs, less attention is given to the timing of LNP uptake, cytosolic transfer and protein expression. However, LNP kinetics is a key factor determining delivery efficiency. Hence quantitative insight into the multi-cascaded pathway of LNPs is of interest to elucidate the mechanism of delivery. Here, we review experiments as well as theoretical modeling of the timing of LNP uptake, mRNA-release and protein expression. We describe LNP delivery as a sequence of stochastic transfer processes and review a mathematical model of subsequent protein translation from mRNA. We compile probabilities and numbers obtained from time resolved microscopy. Specifically, live-cell imaging on single cell arrays (LISCA) allows for high-throughput acquisition of thousands of individual GFP reporter expression time courses. The traces yield the distribution of mRNA life-times, expression rates and expression onset. Correlation analysis reveals an inverse dependence of gene expression efficiency and transfection onset-times. Finally, we discuss why timing of mRNA release is critical in the context of codelivery of multiple nucleic acid species as in the case of mRNA co-expression or CRISPR/Cas gene editing.


Subject(s)
Nanoparticles , RNA , Transfection , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kinetics , Nanoparticles/chemistry
2.
Bioinformatics ; 34(8): 1421-1423, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29206901

ABSTRACT

Motivation: Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. Results: We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models. Availability and implementation: GenSSI 2.0 is an open-source MATLAB toolbox and available at https://github.com/genssi-developer/GenSSI. Contact: thomas.ligon@physik.uni-muenchen.de or jan.hasenauer@helmholtz-muenchen.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Models, Biological , Software , Systems Biology/methods
3.
PLoS One ; 9(9): e107148, 2014.
Article in English | MEDLINE | ID: mdl-25237886

ABSTRACT

Recent work on the use of mRNA lipoplexes for gene delivery demonstrates the need for a mathematical model that simulates and predicts kinetics and transfection efficiency. The small copy numbers involved make it necessary to use stochastic models and include statistical analysis of the variation observed in the experimental data. The modeling requirements are further complicated by the multi-level nature of the problem, where mRNA molecules are contained in lipoplexes, which are in turn contained in endosomes, where each of these entities displays a behavior of its own. We have created a mathematical model that reproduces both the time courses and the statistical variance observed in recent experiments using single-cell tracking of GFP expression after transfection. By applying a few key simplifications and assumptions, we have limited the number of free parameters to five, which we optimize to match five experimental determinants by means of a simulated annealing algorithm. The models demonstrate the need for modeling of nested species in order to reproduce the shape of the dose-response and expression-level curves.


Subject(s)
Computer Simulation , Gene Transfer Techniques , Models, Genetic , Transfection/methods , Endosomes/metabolism , Kinetics , RNA, Messenger/metabolism
4.
Nanomedicine ; 10(4): 679-88, 2014 May.
Article in English | MEDLINE | ID: mdl-24333584

ABSTRACT

In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. FROM THE CLINICAL EDITOR: This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules.


Subject(s)
RNA, Messenger/chemistry , Transfection/methods , Cell Line, Tumor , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Kinetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...