Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 18(1): 271, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620126

ABSTRACT

BACKGROUND: The tumor immune microenvironment is a heterogeneous entity. Gene expression analysis allows us to perform comprehensive immunoprofiling and may assist in dissecting the different components of the immune infiltrate. As gene expression analysis also provides information regarding tumor cells, differences in interactions between the immune system and specific tumor characteristics can also be explored. This study aims to gain further insights in the composition of the tumor immune infiltrate and to correlate these components to histology and overall survival in non-small cell lung cancer (NSCLC). METHODS: Archival tissues from 530 early stage, resected NSCLC patients with annotated tumor and patient characteristics were analyzed using the NanoString nCounter Analysis system. RESULTS: Unsupervised clustering of the samples was mainly driven by the overall level of inflammation, which was not correlated with survival in this patient set. Adenocarcinoma (AD) showed a significantly higher degree of immune infiltration compared to squamous cell carcinoma (SCC). A 34-gene signature, which did not correlate with the overall level of immune infiltration, was identified and showed an OS benefit in SCC. Strikingly, this benefit was not observed in AD. This difference in OS in SCC specifically was confirmed in two independent NSCLC cohorts. The highest correlation between expression of the 34-gene signature and specific immune cell populations was observed for NK cells, but although a plausible mechanism for NK cell intervention in tumor growth could be established in SCC over AD, this could not be translated back to immunohistochemistry, which showed that NK cell infiltration is scarce irrespective of histology. CONCLUSIONS: These findings suggest that the ability of immune cell infiltration and the interaction between tumor and immune cells may be different between AD and SCC histology and that a subgroup of SCC tumors seems more susceptible to Natural Killer cell recognition and killing, whereas this may not occur in AD tumors. A highly sensitive technique like NanoString was able to detect this subgroup based on a 34-gene signature, but further research will be needed to assist in explaining the biological rationale of such low-level expression signatures.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/genetics , Humans , Lung Neoplasms/genetics , Prognosis , Tumor Microenvironment
2.
Oncoimmunology ; 5(5): e1128613, 2016 May.
Article in English | MEDLINE | ID: mdl-27467944

ABSTRACT

Metastatic melanoma is a fatal disease that responds poorly to classical treatments but can be targeted by T cell-based immunotherapy. Cancer vaccines have the potential to generate long-lasting cytotoxic CD8(+) T cell responses able to eradicate established and disseminated tumors. Vaccination against antigens expressed by tumor cells with enhanced metastatic potential represents a highly attractive strategy to efficiently target deadly metastatic disease. Cripto-1 is frequently over-expressed in human carcinomas and melanomas, but is expressed only at low levels on normal differentiated tissues. Cripto-1 is particularly upregulated in cancer-initiating cells and is involved in cellular processes such as cell migration, invasion and epithelial-mesenchymal transition, which are hallmarks of aggressive cancer cells able to initiate metastatic disease. Here, we explored the potential of Cripto-1 vaccination to target metastatic melanoma in a preclinical model. Cripto-1 was overexpressed in highly metastatic B16F10 cells as compared to poorly metastatic B16F1 cells. Moreover, B16F10 cells grown in sphere conditions to enrich for cancer stem cells (CSC) progressively upregulated cripto1 expression. Vaccination of C57Bl/6 mice with a DNA vaccine encoding mouse Cripto-1 elicited a readily detectable/strong cytotoxic CD8(+) T cell response specific for a H-2 Kb-restricted epitope identified based on its ability to bind H-2(b) molecules. Remarkably, Cripto-1 vaccination elicited a protective response against lung metastasis and subcutaneous challenges with highly metastatic B16F10 melanoma cells. Our data indicate that vaccination against Cripto-1 represents a novel strategy to be tested in the clinic.

SELECTION OF CITATIONS
SEARCH DETAIL
...