Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 43(9): 2106-2109, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714757

ABSTRACT

Crystalline optical whispering gallery mode resonators made from alkaline earth fluorides can achieve exceptionally large optical finesse, and are used in a variety of applications, from frequency stabilization and narrow linewidth lasers, to low-noise microwave generation or soliton Kerr frequency combs. Here we demonstrate an efficient coupling method to resonators of these materials, which employs photonic integrated waveguides on a chip based on silicon nitride. By converting a mode from silicon nitride to a free-hanging silica waveguide on a silicon chip, coupling to a crystalline resonator is achieved with a high extinction, while preserving a quality factor exceeding 200 million. This compact, heterogeneous integration of ultra-high Q-factor crystalline resonators with photonic waveguides provides a proof of concept for wafer scale integration and robust, compact packaging for a wide range of applications.

2.
Opt Lett ; 42(3): 514-517, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28146515

ABSTRACT

We present a novel compact dual-comb source based on a monolithic optical crystalline MgF2 multi-resonator stack. The coherent soliton combs generated in the two microresonators of the stack with the repetition rate of 12.1 GHz and difference of 1.62 MHz provided after heterodyning a 300 MHz wide radio frequency comb. An analogous system can be used for dual-comb spectroscopy, coherent LIDAR applications, and massively parallel optical communications.

3.
Opt Express ; 24(24): 27382-27394, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906310

ABSTRACT

Dissipative Kerr solitons have paved the way to broadband and fully coherent optical frequency combs in microresonators. Here, we demonstrate numerically that slow frequency tuning of the pump laser in conjunction with phase or amplitude modulation corresponding to the free spectral range of the microresonator, provides reliable convergence of an initially excited chaotic comb state to a single dissipative Kerr soliton (DKS) state. The efficiency of this approach depends on both frequency tuning speed and modulation depth. The relevance of the proposed method is confirmed experimentally in a MgF2 microresonator.

4.
Science ; 351(6271): 357-60, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26721682

ABSTRACT

Optical solitons are propagating pulses of light that retain their shape because nonlinearity and dispersion balance each other. In the presence of higher-order dispersion, optical solitons can emit dispersive waves via the process of soliton Cherenkov radiation. This process underlies supercontinuum generation and is of critical importance in frequency metrology. Using a continuous wave-pumped, dispersion-engineered, integrated silicon nitride microresonator, we generated continuously circulating temporal dissipative Kerr solitons. The presence of higher-order dispersion led to the emission of red-shifted soliton Cherenkov radiation. The output corresponds to a fully coherent optical frequency comb that spans two-thirds of an octave and whose phase we were able to stabilize to the sub-Hertz level. By preserving coherence over a broad spectral bandwidth, our device offers the opportunity to develop compact on-chip frequency combs for frequency metrology or spectroscopy.

5.
Opt Express ; 23(6): 7713-21, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25837109

ABSTRACT

We predict the existence of a novel type of the flat-top dissipative solitonic pulses, "platicons", in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be altered significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation into a quasicontinuous spectrum of platicons is demonstrated. Generation of similar structures is also possible with bi-harmonic, phase/amplitude modulated pump or via laser injection locking.

6.
Phys Rev Lett ; 113(12): 123901, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25279630

ABSTRACT

The formation of temporal dissipative solitons in optical microresonators enables compact, high-repetition rate sources of ultrashort pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the microresonator mode spectrum on temporal soliton formation in a crystalline MgF2 microresonator. While an overall anomalous group velocity dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonator's mode structure. Avoided mode crossings induced by linear mode coupling in the resonator mode spectrum are found to prevent soliton formation when affecting resonator modes close to the pump laser frequency. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations. The presented results provide for the first time design criteria for the generation of temporal solitons in optical microresonators.

SELECTION OF CITATIONS
SEARCH DETAIL
...