Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Immunother Cancer ; 10(2)2022 02.
Article in English | MEDLINE | ID: mdl-35193929

ABSTRACT

BACKGROUND: Oncolytic viruses are a potent form of active immunotherapy, capable of invoking antitumor T-cell responses. Meanwhile, less is known about their effects on immune checkpoints, the main targets for passive immunotherapy of cancer. T-cell immunoglobulin and mucin domain-3 (TIM-3) is a coinhibitory checkpoint driving T-cell exhaustion in cancer. Here we investigated the effects of oncolytic adenovirus on the TIM-3 checkpoint on tumor-infiltrating immune cells and clinical impact in patients with cancer receiving oncolytic immunotherapy. METHODS: Modulation of TIM-3 expression on tumor-infiltrating immune cells was studied preclinically in B16 melanoma following intratumoral treatment with Ad5/3∆24-granulocyte-macrophage colony-stimulating factor oncolytic adenovirus. We conducted a retrospective longitudinal analysis of 15 patients with advanced-stage cancer with tumor-site biopsies before and after oncolytic immunotherapy, treated in the Advanced Therapy Access Program (ISRCTN10141600, April 5, 2011). Following patient stratification with regard to TIM-3 (increase vs decrease in tumors), overall survival and imaging/marker responses were evaluated by log-rank and Fisher's test, while coinhibitory receptors/ligands, transcriptomic changes and tumor-reactive and tumor-infltrating immune cells in biopsies and blood samples were studied by microarray rank-based statistics and immunoassays. RESULTS: Preclinically, TIM-3+ tumor-infiltrating lymphocytes (TILs) in B16 melanoma showed an exhausted phenotype, whereas oncolytic adenovirus treatment significantly reduced the proportion of TIM-3+ TIL subset through recruitment of less-exhausted CD8+ TIL. Decrease of TIM-3 was observed in 60% of patients, which was associated with improved overall survival over TIM-3 increase patients (p=0.004), together with evidence of clinical benefit by imaging and blood analyses. Coinhibitory T-cell receptors and ligands were consistently associated with TIM-3 changes in gene expression data, while core transcriptional exhaustion programs and T-cell dysfunction were enriched in patients with TIM-3 increase, thus identifying patients potentially benefiting from checkpoint blockade. In striking contrast, patients with TIM-3 decrease displayed an acute inflammatory signature, redistribution of tumor-reactive CD8+ lymphocytes and higher influx of CD8+ TIL into tumors, which were associated with the longest overall survival, suggesting benefit from active immunotherapy. CONCLUSIONS: Our results indicate a key role for the TIM-3 immune checkpoint in oncolytic adenoviral immunotherapy. Moreover, our results identify TIM-3 as a potential biomarker for oncolytic adenoviruses and create rationale for combination with passive immunotherapy for a subset of patients.


Subject(s)
Adenoviridae/pathogenicity , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Immunotherapy/methods , Neoplasms/genetics , Oncolytic Viruses/pathogenicity , Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , T-Lymphocytes , Tumor Microenvironment
2.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33792560

ABSTRACT

Adoptive T cell therapies (ACTs) hold great promise in cancer treatment, but low overall response rates in patients with solid tumors underscore remaining challenges in realizing the potential of this cellular immunotherapy approach. Promoting CD8+ T cell adaptation to tissue residency represents an underutilized but promising strategy to improve tumor-infiltrating lymphocyte (TIL) function. Here, we report that deletion of the HIF negative regulator von Hippel-Lindau (VHL) in CD8+ T cells induced HIF-1α/HIF-2α-dependent differentiation of tissue-resident memory-like (Trm-like) TILs in mouse models of malignancy. VHL-deficient TILs accumulated in tumors and exhibited a core Trm signature despite an exhaustion-associated phenotype, which led to retained polyfunctionality and response to αPD-1 immunotherapy, resulting in tumor eradication and protective tissue-resident memory. VHL deficiency similarly facilitated enhanced accumulation of chimeric antigen receptor (CAR) T cells with a Trm-like phenotype in tumors. Thus, HIF activity in CD8+ TILs promotes accumulation and antitumor activity, providing a new strategy to enhance the efficacy of ACTs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Immunity, Cellular , Immunologic Memory , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms, Experimental/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/immunology
3.
Mol Ther Oncolytics ; 9: 41-50, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29989063

ABSTRACT

The first US Food and Drug Administration (FDA)- and EMA-approved oncolytic virus has been available since 2015. However, there are no markers available that would predict benefit for the individual patient. During 2007-2012, we treated 290 patients with advanced chemotherapy-refractory cancers, using 10 different oncolytic adenoviruses. Treatments were given in a Finnish Medicines Agency (FIMEA)-regulated individualized patient treatment program (the Advanced Therapy Access Program [ATAP]), which required long-term follow-up of patients, which is presented here. Focusing on the longest surviving patients, some key clinical and biological features are presented as "oncograms." Some key attributes that could be captured in the oncogram are suggested to predict treatment response and survival after oncolytic adenovirus treatment. The oncogram includes immunological laboratory parameters assessed in peripheral blood (leukocytes, neutrophil-to-lymphocyte ratio, interleukin-8 [IL-8], HMGB1, anti-viral neutralizing antibody status), features of the patient (gender, performance status), tumor features (histological tumor type, tumor load, region of metastases), and oncolytic virus-specific features (arming of the virus). The retrospective approach used here facilitates verification in a prospective controlled trial setting. To our knowledge, the oncogram is the first holistic attempt to identify the patients most likely to benefit from adenoviral oncolytic virotherapy.

4.
Oncotarget ; 9(5): 6320-6335, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464075

ABSTRACT

After the landmark approval of T-VEC, oncolytic viruses are finding their way to the clinics. However, response rates have still room for improvement, and unfortunately there are currently no available markers to predict responses for oncolytic immunotherapy. Interleukin 8 (IL-8) production is upregulated in many cancers and it also connects to several pathways that have been shown to impair the efficacy of adenoviral immunotherapy. We studied the role of IL-8 in 103 cancer patients treated with oncolytic adenoviruses. We found high baseline serum IL-8 concentration to be independently associated with poor prognosis (p<0.001). Further, normal baseline IL-8 was associated with improved prognostic potential of calculation of the neutrophil-to-lymphocyte ratio (p<0.001). Interestingly, a decrease in IL-8 concentration after treatment with oncolytic adenovirus predicted better overall survival (p<0.001) and higher response rate, although this difference was not significant (p=0.066). We studied the combination of adenovirus and IL-8 neutralizing antibody ex vivo in single cell suspensions and in co-cultures of tumor-associated CD15+ neutrophils and CD3+ tumor-infiltrating lymphocytes derived from fresh patient tumor samples. These results indicate a role for IL-8 as a biomarker in oncolytic virotherapy, but additionally provide a rationale for targeting IL-8 to improve treatment efficacy. In conclusion, curtailing the activity of IL-8 systemically or locally in the tumor microenvironment could improve anti-tumor immune responses resulting in enhanced efficacy of adenoviral immunotherapy of cancer.

5.
Mol Cancer Ther ; 15(9): 2259-69, 2016 09.
Article in English | MEDLINE | ID: mdl-27458139

ABSTRACT

Monoclonal anti-HER2 antibody trastuzumab has significantly improved the survival of patients with HER2-overexpressing tumors. Nevertheless, systemic antibody therapy is expensive, limited in efficacy due to physical tumor barriers, and carries the risk of severe side effects such as cardiomyopathy. Oncolytic viruses mediate cancer-selective transgene expression, kill infected cancer cells while mounting antitumor immune responses, and have recently demonstrated promising efficacy in combination treatments. Here, we armed an oncolytic adenovirus with full-length trastuzumab to achieve effective in situ antibody production coupled with progressive oncolytic cancer cell killing. We constructed an infectivity-enhanced serotype 5 oncolytic adenovirus, Ad5/3-Δ24-tras, coding for human trastuzumab antibody heavy- and light-chain genes, connected by an internal ribosome entry site. Infected cancer cells were able to assemble full-length functional antibody, as confirmed by Western blot, ELISA, and antibody-dependent cell-mediated cytotoxicity assay. Importantly, oncolysis was required for release of the antibody into tumors, providing additional spatial selectivity. Ad5/3-Δ24-tras showed potent in vitro cytotoxicity and enhanced antitumor efficacy over oncolytic control virus Ad5/3-Δ24 or commercial trastuzumab in HER2-positive cancer models in vivo (both P < 0.05). Furthermore, Ad5/3-Δ24-tras resulted in significantly higher tumor-to-systemic antibody concentrations (P < 0.001) over conventional delivery. Immunological analyses revealed dendritic cell activation and natural killer cell accumulation in tumor-draining lymph nodes. Thus, Ad5/3-Δ24-tras is an attractive anticancer approach combining oncolytic immunotherapy with local trastuzumab production, resulting in improved in vivo efficacy and immune cell activation in HER2-positive cancer. Moreover, the finding that tumor cells can produce functional antibody as directed by oncolytic virus could lead to many valuable antitumor approaches. Mol Cancer Ther; 15(9); 2259-69. ©2016 AACR.


Subject(s)
Adenoviridae/genetics , Antibodies, Monoclonal/genetics , Gene Expression , Genetic Therapy , Genetic Vectors/genetics , Oncolytic Viruses/genetics , Receptor, ErbB-2/antagonists & inhibitors , Trastuzumab/genetics , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Female , Gene Order , Humans , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice , T-Lymphocyte Subsets/immunology , Trastuzumab/immunology , Xenograft Model Antitumor Assays
6.
Oncoimmunology ; 5(2): e1078057, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27057453

ABSTRACT

Breast cancer is a heterogeneous disease, characterized by several distinct biological subtypes, among which triple-negative breast cancer (TNBC) is one associated with a poor prognosis. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules to boost virus triggered antitumoral immune responses. Cyclophosphamide (CP) is a chemotherapy drug that is associated with cytotoxicity and immunosuppression at higher doses, whereas immunostimulatory and anti-angiogenic properties are observed at low continuous dosage. Therefore, the combination of oncolytic immuno-virotherapy with low-dose CP is an appealing approach. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a TNBC cell line and in vivo in an orthotopic xenograft mouse model, in combination with low-dose CP or its main active metabolite 4-hydroperoxycyclophosphamide (4-HP-CP). Furthermore, we summarized the breast cancer-specific human data on this virus from the Advanced Therapy Access Program (ATAP). Low-dose CP increased the efficacy of Ad5/3-D24-GMCSF in vitro and in a TNBC mouse model. In ATAP, treatments appeared safe and well-tolerated. Thirteen out of 16 breast cancer patients treated were evaluable for possible benefits with modified RECIST 1.1 criteria: 1 patient had a minor response, 2 had stable disease (SD), and 10 had progressive disease (PD). One patient is alive at 1,771 d after treatment. Ad5/3-D24-GMCSF in combination with low-dose CP showed promising efficacy in preclinical studies and possible antitumor activity in breast cancer patients refractory to other forms of therapy. This preliminary data supports continuing the clinical development of oncolytic adenoviruses for treatment of breast cancer, including TNBC.

7.
Mol Ther ; 24(7): 1323-32, 2016 08.
Article in English | MEDLINE | ID: mdl-27039846

ABSTRACT

The development of oncolytic viruses has recently made great progress towards being available to cancer patients. With the breakthrough into clinics, it is crucial to analyze the existing clinical experience and use it as a basis for treatment improvements. Here, we report clinical data from 290 patients treated with oncolytic adenovirus. Using clinical variables and treatment characteristics, we constructed statistical models with regard to treatment response and overall survival (OS). Additionally, we investigated effects of neutralizing antibodies, tumor burden, and peripheral blood leucocyte counts on these outcomes. We found the absence of liver metastases to correlate with an improved rate of disease control (P = 0.021). In multivariate evaluation, patients treated with viruses coding for immunostimulatory granulocyte macrophage colony-stimulating factor were linked to better prognosis (hazard ratio (HR) 0.378, P < 0.001), as well as women with any cancer type (HR 0.694, P = 0.017). In multivariate analysis for imaging response, patients treated via intraperitoneal injection were more likely to achieve disease control (odds ratio (OR) 3.246, P = 0.027). Patients with low neutrophil-to-lymphocyte ratio before treatment had significantly longer OS (P < 0.001). These findings could explain some of the variation seen in treatment outcomes after virotherapy. Furthermore, the results offer hypotheses for treatment optimization and patient selection in oncolytic adenovirus immunotherapy.


Subject(s)
Adenoviridae , Neoplasms/mortality , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses , Adenoviridae/genetics , Adenoviridae/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Biomarkers , Female , Gene Expression , Genetic Therapy , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Leukocyte Count , Liver Neoplasms/diagnosis , Liver Neoplasms/secondary , Male , Neoplasm Metastasis , Neoplasms/diagnosis , Neoplasms/genetics , Odds Ratio , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Positron Emission Tomography Computed Tomography , Prognosis , Proportional Hazards Models , Tomography, X-Ray Computed , Transgenes , Treatment Outcome , Tumor Burden
8.
Catheter Cardiovasc Interv ; 87(6): E233-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26525305

ABSTRACT

OBJECTIVE: To review the operative history and clinical and catheterization data on patients treated with total cavopulmonary connection (TCPC) with baffle fenestration and to study whether it is possible to predict the fate of fenestration. BACKGROUND: A baffle fenestration may improve postoperative outcomes after Fontan operation but is later associated with cyanosis and thromboembolic risk. Fenestration may close spontaneously or it can be closed percutaneously in patients with favorable hemodynamics. METHODS: Patients were divided into three groups: those with spontaneous closure of fenestration (group S, n = 34) and those with patent fenestration and favorable (group F, n = 36) or unfavorable (group U, n = 20) response to fenestration test occlusion. Clinical records were reviewed for demographic and anatomical characteristics, previous surgeries, and catheterizations. RESULTS: Predominant ventricular morphology was right ventricle (RV)/left ventricle (LV)/undeterminate in 19/14/1 patients in group S, 14/22/0 in group F, and 14/6/0 in group U. No differences were detected between groups in pre-TCPC catheterization data. Type of baffle fenestration was window/tube in 20/14 in group S, 28/8 in group F, and 20/0 in group U. All tube fenestrations either closed spontaneously or could be closed percutaneously. Twenty-nine percent of patients with window-type fenestrations failed the test occlusion. CONCLUSIONS: Spontaneous closure and favorable result in test occlusion are more common in tube than in window fenestrations. Since most preoperative anatomic and hemodynamic factors were similar in all patient groups, we find it difficult to predict the fate of a window-type fenestration and the result of test occlusion. © 2015 Wiley Periodicals, Inc.


Subject(s)
Fontan Procedure/methods , Heart Defects, Congenital/surgery , Hemodynamics/physiology , Cardiac Catheterization , Child , Child, Preschool , Female , Finland/epidemiology , Follow-Up Studies , Fontan Procedure/mortality , Heart Defects, Congenital/mortality , Heart Defects, Congenital/physiopathology , Humans , Infant , Male , Postoperative Period , Retrospective Studies , Survival Rate/trends , Treatment Outcome
9.
Mol Ther ; 24(1): 175-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26310629

ABSTRACT

Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.


Subject(s)
Adenoviridae/physiology , Gene Expression Profiling/methods , Immunity, Innate , Neoplasms/genetics , Neoplasms/therapy , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , CD4 Antigens/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasms/immunology , Oncolytic Virotherapy , Oncolytic Viruses/physiology , Prognosis , Receptors, Cell Surface/metabolism , Treatment Outcome
10.
Oncoimmunology ; 4(3): e989771, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25949903

ABSTRACT

With the emergence of effective immunotherapeutics, which nevertheless harbor the potential for toxicity and are expensive to use, biomarkers are urgently needed for identification of cancer patients who respond to treatment. In this clinical-epidemiological study of 202 cancer patients treated with oncolytic adenoviruses, we address the biomarker value of serum high-mobility group box 1 (HMGB1) protein. Overall survival and imaging responses were studied as primary endpoints and adjusted for confounding factors in two multivariate analyses (Cox and logistic regression). Mechanistic studies included assessment of circulating tumor-specific T-cells by ELISPOT, virus replication by quantitative PCR, and inflammatory cytokines by cytometric bead array. Patients with low HMGB1 baseline levels (below median concentration) showed significantly improved survival (p = 0.008, Log-Rank test) and radiological disease control rate (49.2% vs. 30.0%, p = 0.038, χ2 test) as compared to high-baseline patients. In multivariate analyses, the low HMGB1 baseline status was a strong prognostic (HR 0.638, 95% CI 0.462-0.881) and the best predictive factor for disease control (OR 2.618, 95% CI 1.004-6.827). Indicative of an immune-mediated mechanism, antitumor T-cell activity in blood and response to immunogenic-transgene coding viruses associated with improved outcome only in HMGB1-low patients. Our results suggest that serum HMGB1 baseline is a useful prognostic and predictive biomarker for oncolytic immunotherapy with adenoviruses, setting the stage for prospective clinical studies.

11.
Int J Cancer ; 137(7): 1775-83, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-25821063

ABSTRACT

Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Melanoma/therapy , Oncolytic Virotherapy/methods , Adenoviridae/genetics , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Cricetinae , Cyclophosphamide/pharmacology , Female , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Humans , Macrophages/pathology , Macrophages/virology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/virology , Mice , Mice, Nude , Monocytes/pathology , Monocytes/virology , Random Allocation , Xenograft Model Antitumor Assays
12.
Mol Ther ; 23(5): 964-973, 2015 05.
Article in English | MEDLINE | ID: mdl-25655312

ABSTRACT

The quality of the antitumor immune response is decisive when developing new immunotherapies for cancer. Oncolytic adenoviruses cause a potent immunogenic stimulus and arming them with costimulatory molecules reshapes the immune response further. We evaluated peripheral blood T-cell subsets of 50 patients with refractory solid tumors undergoing treatment with oncolytic adenovirus. These data were compared to changes in antiviral and antitumor T cells, treatment efficacy, overall survival, and T-cell subsets in pre- and post-treatment tumor biopsies. Treatment caused a significant (P < 0.0001) shift in T-cell subsets in blood, characterized by a proportional increase of CD8(+) cells, and decrease of CD4(+) cells. Concomitant treatment with cyclophosphamide and temozolomide resulted in less CD4(+) decrease (P = 0.041) than cyclophosphamide only. Interestingly, we saw a correlation between T-cell changes in peripheral blood and the tumor site. This correlation was positive for CD8(+) and inverse for CD4(+) cells. These findings give insight to the interconnections between peripheral blood and tumor-infiltrating lymphocyte (TIL) populations regarding oncolytic virotherapy. In particular, our data suggest that induction of T-cell response is not sufficient for clinical response in the context of immunosuppressive tumors, and that peripheral blood T cells have a complicated and potentially misleading relationship with TILs.


Subject(s)
Adenoviridae , Genetic Therapy , Neoplasms/immunology , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses , T-Lymphocyte Subsets/immunology , Adenoviridae/genetics , Adolescent , Adult , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Child , Female , Humans , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/genetics , Oncolytic Viruses/genetics , T-Lymphocyte Subsets/metabolism , Transduction, Genetic , Transgenes , Young Adult
13.
Oncotarget ; 6(6): 4467-81, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25714011

ABSTRACT

Oncolytic viruses that selectively replicate in tumor cells can be used for treatment of cancer. Accumulating data suggests that virus induced oncolysis can enhance anti-tumor immunity and break immune tolerance. To capitalize on the immunogenic nature of oncolysis, we generated a quadruple modified oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (GMCSF). Ad5/3-E2F-Δ24-GMCSF (CGTG-602) was engineered to contain a tumor specific E2F1 promoter driving an E1 gene deleted at the retinoblastoma protein binding site ("Δ24"). The fiber features a knob from serotype 3 for enhanced gene delivery to tumor cells. The virus was tested preclinically in vitro and in vivo and then 13 patients with solid tumors refractory to standard therapies were treated. Treatments were well tolerated and frequent tumor- and adenovirus-specific T-cell immune responses were seen. Overall, with regard to tumor marker or radiological responses, signs of antitumor efficacy were seen in 9/12 evaluable patients (75%). The radiological disease control rate with positron emission tomography was 83% while the response rate (including minor responses) was 50%. Tumor biopsies indicated accumulation of immunological cells, especially T-cells, to tumors after treatment. RNA expression analyses of tumors indicated immunological activation and metabolic changes secondary to virus replication.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Immunotherapy/methods , Neoplasms/therapy , Oncolytic Virotherapy/methods , Adult , Aged , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cricetinae , E2F1 Transcription Factor/genetics , Female , Humans , Male , Mesocricetus , Middle Aged , Oncolytic Viruses , Promoter Regions, Genetic , Xenograft Model Antitumor Assays
14.
Mol Ther ; 23(2): 321-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25381801

ABSTRACT

Oncolytic immunotherapy with cytokine armed replication competent viruses is an emerging approach in cancer treatment. In a recent randomized trial, an increase in response rate was seen but the effect on overall survival is not known with any virus. To facilitate randomized trials, we performed a case-control study assessing the survival of 270 patients treated in an Advanced Therapy Access Program (ATAP), in comparison to matched concurrent controls from the same hospital. The overall survival of all virus treated patients was not increased over controls. However, when analysis was restricted to GMCSF-sensitive tumor types treated with GMSCF-coding viruses, a significant improvement in median survival was present (from 170 to 208 days, P = 0.0012, N = 148). An even larger difference was seen when analysis was restricted to good performance score patients (193 versus 292 days, P = 0.034, N = 90). The survival of ovarian cancer patients was especially promising as median survival nearly quadrupled (P = 0.0003, N = 37). These preliminary data lend support to initiation of randomized clinical trials with GMCSF-coding oncolytic adenoviruses.


Subject(s)
Adenoviridae/genetics , Genetic Therapy , Genetic Vectors/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Neoplasms/genetics , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Female , Genetic Vectors/administration & dosage , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/mortality , Proportional Hazards Models , Treatment Outcome , Young Adult
15.
Int J Cancer ; 135(3): 720-30, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24374597

ABSTRACT

Sarcomas are a relatively rare cancer, but often incurable at the late metastatic stage. Oncolytic immunotherapy has gained attention over the past years, and a wide range of oncolytic viruses have been delivered via intratumoral injection with positive safety and promising efficacy data. Here, we report preclinical and clinical results from treatment of sarcoma with oncolytic adenovirus Ad5/3-D24-GMCSF (CGTG-102). Ad5/3-D24-GMCSF is a serotype chimeric oncolytic adenovirus coding for human granulocyte-macrophage colony-stimulating factor (GM-CSF). The efficacy of Ad5/3-D24-GMCSF was evaluated on a panel of soft-tissue sarcoma (STS) cell lines and in two animal models. Sarcoma specific human data were also collected from the Advanced Therapy Access Program (ATAP), in preparation for further clinical development. Efficacy was seen in both in vitro and in vivo STS models. Fifteen patients with treatment-refractory STS (13/15) or primary bone sarcoma (2/15) were treated in ATAP, and treatments appeared safe and well-tolerated. A total of 12 radiological RECIST response evaluations were performed, and two cases of minor response, six cases of stable disease and four cases of progressive disease were detected in patients progressing prior to virus treatment. Overall, the median survival time post treatment was 170 days. One patient is still alive at 1,459 days post virus treatment. In summary, Ad5/3-D24-GMCSF appears promising for the treatment of advanced STS; a clinical trial for treatment of refractory injectable solid tumors including STS is ongoing.


Subject(s)
Adenoviridae/genetics , Genetic Therapy , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Oncolytic Virotherapy , Sarcoma/therapy , Animals , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Injections, Intralesional , Mesocricetus , Mice , Mice, Nude , Prognosis , Sarcoma/blood , Sarcoma/mortality , Survival Rate , Tumor Cells, Cultured , Virus Replication , Xenograft Model Antitumor Assays
16.
J Transl Med ; 11: 193, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23965133

ABSTRACT

BACKGROUND: Oncolytic viruses have shown potential as cancer therapeutics, but not all patients seem to benefit from therapy. Polymorphisms in Fc gamma receptors (FcgRs) lead to altered binding affinity of IgG between the receptor allotypes and therefore contribute to differences in immune defense mechanisms. Associations have been identified between FcgR polymorphisms and responsiveness to different immunotherapies. Taken together with the increasing understanding that immunological factors might determine the efficacy of oncolytic virotherapy we studied whether FcgR polymorphisms would have prognostic and/or predictive significance in the context of oncolytic adenovirus treatments. METHODS: 235 patients with advanced solid tumors were genotyped for two FcgR polymorphisms, FcgRIIa-H131R (rs1801274) and FcgRIIIa-V158F (rs396991), using TaqMan based qPCR. The genotypes were correlated with patient survival and tumor imaging data. RESULTS: In patients treated with oncolytic adenoviruses, overall survival was significantly shorter if the patient had an FcgRIIIa-VV/ FcgRIIa-HR (VVHR) genotype combination (P = 0,032). In contrast, patients with FFHR and FFRR genotypes had significantly longer overall survival (P = 0,004 and P = 0,006, respectively) if they were treated with GM-CSF-armed adenovirus in comparison to other viruses. Treatment of these patients with unarmed virus correlated with shorter survival (P < 0,0005 and P = 0,016, respectively). Treating FFHH individuals with CD40L-armed virus resulted in longer survival than treatment with other viruses (P = 0,047). CONCLUSIONS: Our data are compatible with the hypothesis that individual differences in effector cell functions, such as NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC) and tumor antigen presentation by APCs caused by polymorphisms in FcgRs could play role in the effectiveness of oncolytic virotherapies. If confirmed in larger populations, FcgR polymorphisms could have potential as prognostic and predictive biomarkers for oncolytic adenovirus therapies to enable better selection of patients for clinical trials. Also, putative associations between genotypes, different viruses and survival implicate potentially important mechanistic issues.


Subject(s)
Adenoviridae/metabolism , Oncolytic Virotherapy , Receptors, IgG/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Gene Frequency/genetics , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Prognosis , Survival Analysis , Treatment Outcome , Young Adult
17.
Mol Ther ; 21(6): 1212-23, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23546299

ABSTRACT

Oncolytic adenoviruses and certain chemotherapeutics can induce autophagy and immunogenic cancer cell death. We hypothesized that the combination of oncolytic adenovirus with low-dose temozolomide (TMZ) is safe, effective, and capable of inducing antitumor immune responses. Metronomic low-dose cyclophosphamide (CP) was added to selectively reduce regulatory T-cells. Preclinically, combination therapy inhibited tumor growth, increased autophagy, and triggered immunogenic cell death as indicated by elevated calreticulin, adenosine triphosphate (ATP) release, and nuclear protein high-mobility group box-1 (HMGB1) secretion. A total of 41 combination treatments given to 17 chemotherapy-refractory cancer patients were well tolerated. We observed anti- and proinflammatory cytokine release, evidence of virus replication, and induction of neutralizing antibodies. Tumor cells showed increased autophagy post-treatment. Release of HMGB1 into serum--a possible indicator of immune response--increased in 60% of treatments, and seemed to correlate with tumor-specific T-cell responses, observed in 10/15 cases overall (P = 0.0833). Evidence of antitumor efficacy was seen in 67% of evaluable treatments with a trend for increased survival over matched controls treated with virus only. In summary, the combination of oncolytic adenovirus with low-dose TMZ and metronomic CP increased tumor cell autophagy, elicited antitumor immune responses, and showed promising safety and efficacy.


Subject(s)
Adenoviridae/genetics , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Dacarbazine/analogs & derivatives , Neoplasms/therapy , Oncolytic Virotherapy/methods , Adenosine Triphosphate/metabolism , Adenoviridae/physiology , Adolescent , Adult , Aged , Animals , Antibodies, Neutralizing/blood , Calreticulin/metabolism , Cell Death/drug effects , Cell Line, Tumor , Child , Combined Modality Therapy/methods , Cyclophosphamide/pharmacology , Cytokines/blood , DNA, Viral/blood , Dacarbazine/pharmacology , Dose-Response Relationship, Drug , Female , HMGB1 Protein/blood , HMGB1 Protein/metabolism , Humans , Immunohistochemistry , Male , Mice , Mice, Nude , Microscopy, Electron , Middle Aged , Oncolytic Viruses/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Temozolomide , Virus Replication , Xenograft Model Antitumor Assays , Young Adult
18.
Clin Cancer Res ; 19(10): 2734-44, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23493351

ABSTRACT

PURPOSE: Multiple injections of oncolytic adenovirus could enhance immunologic response. In the first part of this article, the focus was on immunologic aspects. Sixty patients previously naïve to oncolytic virus and who had white blood cells available were treated. Thirty-nine of 60 were assessed after a single virus administration, whereas 21 of 60 received a "serial treatment" consisting of three injections within 10 weeks. In the second part, we focused on 115 patients treated with a granulocyte macrophage colony-stimulating factor (GM-CSF)-coding capsid chimeric adenovirus, CGTG-102. RESULTS: Following serial treatment, both increase and decrease in antitumor T cells in blood were seen more frequently, findings which are compatible with induction of T-cell immunity and trafficking of T cells to tumors, respectively. Safety was good in both groups. In 115 patients treated with CGTG-102 (Ad5/3-D24-GMCSF), median overall survival was 111 days following single and 277 days after serial treatment in nonrandomized comparison. Switching the virus capsid for avoiding neutralizing antibodies in a serial treatment featuring three different viruses did not impact safety or efficacy. A correlation between antiviral and antitumor T cells was seen (P = 0.001), suggesting that viral oncolysis can result in epitope spreading and breaking of tumor-associated immunologic tolerance. Alternatively, some patients may be more susceptible to induction of T-cell immunity and/or trafficking. CONCLUSIONS: These results provide the first human data linking antiviral immunity with antitumor immunity, implying that oncolytic viruses could have an important role in cancer immunotherapy.


Subject(s)
Neoplasms/immunology , Neoplasms/therapy , Oncolytic Virotherapy/methods , T-Lymphocytes/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Adolescent , Adult , Aged , Capsid Proteins/genetics , Capsid Proteins/immunology , Child , Clonal Anergy/immunology , Enzyme-Linked Immunosorbent Assay , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Male , Middle Aged , Neoplasms/classification , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Survival Analysis , T-Lymphocytes/metabolism , Time Factors , Treatment Outcome , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
19.
Mol Ther ; 20(1): 221-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22044933

ABSTRACT

Calcium channel blockers including verapamil have been proposed to enhance release and antitumor efficacy of oncolytic adenoviruses in preclinical studies but this has not been studied in humans before. Here, we studied if verapamil leads to increased replication of oncolytic adenovirus in cancer patients, as measured by release of virions from tumor cells into the systemic circulation. The study was conducted as a matched case-control study of advanced cancer patients treated with oncolytic adenoviruses with or without verapamil. We observed that verapamil increased mean virus titers present in blood after treatment (P < 0.05). The frequency or severity of adverse events was not increased, nor were cytokine responses or neutralizing antibody levels different between groups. Signs of possible treatment-related clinical benefits were observed in both groups, but there was no significant difference in responses or survival. Thus, our data suggests that the combination of verapamil with oncolytic adenoviruses is safe and well tolerated. Moreover, verapamil treatment seems to result in higher virus titers in blood, indicating enhanced overall replication in tumors. A randomized trial is needed to confirm these findings and to study if enhanced replication results in benefits to patients.


Subject(s)
Adenoviridae/genetics , Calcium Channel Blockers/therapeutic use , Genetic Vectors , Neoplasms/therapy , Oncolytic Viruses/genetics , Verapamil/therapeutic use , Adenoviridae/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Calcium Channel Blockers/adverse effects , Combined Modality Therapy , DNA, Viral/blood , Drug Synergism , Female , Genetic Therapy , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Humans , Inflammation Mediators/blood , Male , Middle Aged , Neoplasm Staging , Neoplasms/mortality , Neoplasms/pathology , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/immunology , Survival Analysis , Treatment Outcome , Verapamil/adverse effects , Viral Load/drug effects , Young Adult
20.
Mol Ther ; 19(10): 1858-66, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21792178

ABSTRACT

Oncolytic adenoviruses are an emerging experimental approach for treatment of tumors refractory to available modalities. Although preclinical results have been promising, and clinical safety has been excellent, it is also apparent that tumors can become virus resistant. The resistance mechanisms acquired by advanced tumors against conventional therapies are increasingly well understood, which has allowed development of countermeasures. To study this in the context of oncolytic adenovirus, we developed two in vivo models of acquired resistance, where initially sensitive tumors eventually gain resistance and relapse. These models were used to investigate the phenomenon on RNA and protein levels using two types of analysis of microarray data, quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. Interferon (IFN) signaling pathways were found upregulated and Myxovirus resistance protein A (MxA) expression was identified as a marker correlating with resistance, while transplantation experiments suggested a role for tumor stroma in maintaining resistance. Furthermore, pathway analysis suggested potential therapeutic targets in oncolytic adenovirus-resistant cells. Improved understanding of the antiviral phenotype causing tumor recurrence is of key importance in order to improve treatment of advanced tumors with oncolytic adenoviruses. Given the similarities between mechanisms of action, this finding might be relevant for other oncolytic viruses as well.


Subject(s)
Adenoviridae/physiology , Interferons/biosynthesis , Oncolytic Virotherapy , Animals , Base Sequence , Cell Line, Tumor , DNA Primers , Female , Humans , Immunohistochemistry , Mice , Mice, SCID , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...