Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 262: 107140, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36947907

ABSTRACT

Field measurements of Rn-222 fluxes from the tops and bottoms of compacted clay radon barriers were used to calculate effective Rn diffusion coefficients (DRn) at four uranium waste disposal sites in the western United States to assess cover performance after more than 20 years of service. Values of DRn ranged from 7.4 × 10-7 to 6.0 × 10-9 m2/s, averaging 1.42 × 10-7. Water saturation (SW) from soil cores indicated that there was relatively little control of DRn by SW, especially at higher moisture levels, in contrast to estimates from most steady-state diffusion models. This is attributed to preferential pathways intrinsic to construction of the barriers or to natural process that have developed over time including desiccation cracks, root channels, and insect burrows in the engineered earthen barriers. A modification to some models in which fast and slow pathway DRn values are partitioned appears to give a good representation of the data; 4% of the fast pathway was needed to fit the data regression. For locations with high Sw and highest DRn (and fluxes) at each site, the proportion of fast pathway ranged from 1.7% to 34%, but for many locations with lower fluxes, little if any fast pathway was needed.


Subject(s)
Radiation Monitoring , Radon , Uranium , Radon/analysis , Diffusion , Waste Disposal Facilities
2.
J Environ Radioact ; 237: 106719, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34454248

ABSTRACT

To evaluate the properties of earthen covers over uranium mill tailings disposal cells after about 20 years of service, we measured Rn-222 fluxes and radon barrier properties at the Falls City, TX, Bluewater, NM, Shirley Basin South, WY, and Lakeview, OR disposal sites in western USA. A total of 115 in-service Rn fluxes were obtained at 26 test pit locations from the top surface of the exposed Rn barrier (i.e., after protective layers were removed by excavation) and 24 measurements were obtained from the surface of the underlying waste after excavation through the Rn barrier layer. Rn-222 concentrations were determined in accumulation chambers using a continuously monitoring electronic radon monitor (ERM) equipped with a solid-state alpha particle detector. Effects of surface features on Rn flux including vegetation, seasonal ponding, and animal burrowing were quantified. Comparison of measured fluxes with values that were measured shortly after the Rn barriers were completed (as-built) show that most measurements fell within the range of the as-built fluxes, generally at very low fluxes. At two sites fluxes were measured that were greater than the highest as-built flux. High fluxes are typically caused by a combination of enhanced moisture removal and preferential pathways for Rn transport, often caused by deep-rooted plants. Such localized features result in a spatially heterogeneous distribution of fluxes that can vary substantially over only a meter or two.


Subject(s)
Radiation Monitoring , Radon , Soil Pollutants, Radioactive , Uranium , Radon/analysis , Soil Pollutants, Radioactive/analysis
3.
Phys Rev E ; 96(4-1): 042905, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29347540

ABSTRACT

We summarize and numerically compare two approaches for modeling and simulating the dynamics of dry granular matter. The first one, the discrete-element method via penalty (DEM-P), is commonly used in the soft matter physics and geomechanics communities; it can be traced back to the work of Cundall and Strack [P. Cundall, Proc. Symp. ISRM, Nancy, France 1, 129 (1971); P. Cundall and O. Strack, Geotechnique 29, 47 (1979)GTNQA80016-850510.1680/geot.1979.29.1.47]. The second approach, the discrete-element method via complementarity (DEM-C), considers the grains perfectly rigid and enforces nonpenetration via complementarity conditions; it is commonly used in robotics and computer graphics applications and had two strong promoters in Moreau and Jean [J. J. Moreau, in Nonsmooth Mechanics and Applications, edited by J. J. Moreau and P. D. Panagiotopoulos (Springer, Berlin, 1988), pp. 1-82; J. J. Moreau and M. Jean, Proceedings of the Third Biennial Joint Conference on Engineering Systems and Analysis, Montpellier, France, 1996, pp. 201-208]. The DEM-P and DEM-C are manifestly unlike each other: They use different (i) approaches to model the frictional contact problem, (ii) sets of model parameters to capture the physics of interest, and (iii) classes of numerical methods to solve the differential equations that govern the dynamics of the granular material. Herein, we report numerical results for five experiments: shock wave propagation, cone penetration, direct shear, triaxial loading, and hopper flow, which we use to compare the DEM-P and DEM-C solutions. This exercise helps us reach two conclusions. First, both the DEM-P and DEM-C are predictive, i.e., they predict well the macroscale emergent behavior by capturing the dynamics at the microscale. Second, there are classes of problems for which one of the methods has an advantage. Unlike the DEM-P, the DEM-C cannot capture shock-wave propagation through granular media. However, the DEM-C is proficient at handling arbitrary grain geometries and solves, at large integration step sizes, smaller problems, i.e., containing thousands of elements, very effectively. The DEM-P vs DEM-C comparison is carried out using a public-domain, open-source software package; the models used are available online.

SELECTION OF CITATIONS
SEARCH DETAIL
...