Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 1034, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828050

ABSTRACT

Mapping 3D plasma membrane topology in live cells can bring unprecedented insights into cell biology. Widefield-based super-resolution methods such as 3D-structured illumination microscopy (3D-SIM) can achieve twice the axial ( ~ 300 nm) and lateral ( ~ 100 nm) resolution of widefield microscopy in real time in live cells. However, twice-resolution enhancement cannot sufficiently visualize nanoscale fine structures of the plasma membrane. Axial interferometry methods including fluorescence light interference contrast microscopy and its derivatives (e.g., scanning angle interference microscopy) can determine nanoscale axial locations of proteins on and near the plasma membrane. Thus, by combining super-resolution lateral imaging of 2D-SIM with axial interferometry, we developed multi-angle-crossing structured illumination microscopy (MAxSIM) to generate multiple incident angles by fast, optoelectronic creation of diffraction patterns. Axial localization accuracy can be enhanced by placing cells on a bottom glass substrate, locating a custom height-controlled mirror (HCM) at a fixed axial position above the glass substrate, and optimizing the height reconstruction algorithm for noisy experimental data. The HCM also enables imaging of both the apical and basal surfaces of a cell. MAxSIM with HCM offers high-fidelity nanoscale 3D topological mapping of cell plasma membranes with near-real-time ( ~ 0.5 Hz) imaging of live cells and 3D single-molecule tracking.


Subject(s)
Algorithms , Lighting , Microscopy, Fluorescence/methods , Microscopy, Interference , Interferometry
2.
Sci Adv ; 3(8): e1602478, 2017 08.
Article in English | MEDLINE | ID: mdl-28819641

ABSTRACT

The superposition principle is fundamental to the quantum description of both light and matter. Recently, a number of experiments have sought to directly test this principle using coherent light, single photons, and nuclear spin states. We extend these experiments to massive particles for the first time. We compare the interference patterns arising from a beam of large dye molecules diffracting at single, double, and triple slit material masks to place limits on any high-order, or multipath, contributions. We observe an upper bound of less than one particle in a hundred deviating from the expectations of quantum mechanics over a broad range of transverse momenta and de Broglie wavelength.

3.
Nat Nanotechnol ; 10(10): 845-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26301904

ABSTRACT

Matter-wave interferometry has become an essential tool in studies on the foundations of quantum physics and for precision measurements. Mechanical gratings have played an important role as coherent beamsplitters for atoms, molecules and clusters, because the basic diffraction mechanism is the same for all particles. However, polarizable objects may experience van der Waals shifts when they pass the grating walls, and the undesired dephasing may prevent interferometry with massive objects. Here, we explore how to minimize this perturbation by reducing the thickness of the diffraction mask to its ultimate physical limit, that is, the thickness of a single atom. We have fabricated diffraction masks in single-layer and bilayer graphene as well as in a 1 nm thin carbonaceous biphenyl membrane. We identify conditions to transform an array of single-layer graphene nanoribbons into a grating of carbon nanoscrolls. We show that all these ultrathin nanomasks can be used for high-contrast quantum diffraction of massive molecules. They can be seen as a nanomechanical answer to the question debated by Bohr and Einstein of whether a softly suspended double slit would destroy quantum interference. In agreement with Bohr's reasoning we show that quantum coherence prevails, even in the limit of atomically thin gratings.

4.
Nano Lett ; 15(9): 5944-9, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26161575

ABSTRACT

Graphene has many claims to fame: it is the thinnest possible membrane, it has unique electronic and excellent mechanical properties, and it provides the perfect model structure for studying materials science at the atomic level. However, for many practical studies and applications the ordered hexagon arrangement of carbon atoms in graphene is not directly suitable. Here, we show that the atoms can be locally either removed or rearranged into a random pattern of polygons using a focused ion beam (FIB). The atomic structure of the disordered regions is confirmed with atomic-resolution scanning transmission electron microscopy images. These structural modifications can be made on macroscopic scales with a spatial resolution determined only by the size of the ion beam. With just one processing step, three types of structures can be defined within a graphene layer: chemically inert graphene, chemically active amorphous 2D carbon, and empty areas. This, along with the changes in properties, gives promise that FIB patterning of graphene will open the way for creating all-carbon heterostructures to be used in fields ranging from nanoelectronics and chemical sensing to composite materials.

5.
Nat Commun ; 6: 7334, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-26055942

ABSTRACT

Molecule-plasmon interactions have been shown to have a definite role in light propagation through optical microcavities due to strong coupling between molecular excitations and surface plasmons. This coupling can lead to macroscopic extended coherent states exhibiting increment in temporal and spatial coherency and a large Rabi splitting. Here, we demonstrate spatial modulation of light transmission through a single microcavity patterned on a free-standing Au film, strongly coupled to one of the most efficient energy transfer photosynthetic proteins in nature, photosystem I. Here we observe a clear correlation between the appearance of spatial modulation of light and molecular photon absorption, accompanied by a 13-fold enhancement in light transmission and the emergence of a distinct electromagnetic standing wave pattern in the cavity. This study provides the path for engineering various types of bio-photonic devices based on the vast diversity of biological molecules in nature.

6.
Ultramicroscopy ; 144: 26-31, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24815028

ABSTRACT

Electron beams are extensively used in lithography, microscopy, material studies and electronic chip inspection. Today, beams are mainly shaped using magnetic or electric forces, enabling only simple shaping tasks such as focusing or scanning. Recently, binary amplitude gratings achieved complex shapes. These, however, generate multiple diffraction orders, hence the desired shape, appearing only in one order, retains little of the beam energy. Here we demonstrate a method in electron-optics for arbitrarily shaping electron beams into a single desired shape, by precise patterning of a thin-membrane. It is conceptually similar to shaping light beams using refractive or diffractive glass elements such as lenses or holograms - rather than applying electromagnetic forces, the beam is controlled by spatially modulating its wavefront. Our method allows for nearly-maximal energy transference to the designed shape, and may avoid physical damage and charging effects that are the scorn of commonly-used (e.g. Zernike and Hilbert) phase-plates. The experimental demonstrations presented here - on-axis Hermite-Gauss and Laguerre-Gauss (vortex) beams, and computer-generated holograms - are a first example of nearly-arbitrary manipulation of electron beams. Our results herald exciting prospects for microscopic material studies, enables electron lithography with fixed sample and beam and high resolution electronic chip inspection by structured electron illumination.

7.
Nature ; 494(7437): 331-5, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23426323

ABSTRACT

Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

8.
Nano Lett ; 10(7): 2416-20, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20507148

ABSTRACT

Electrical current measurements through individually wired colloidal CdSe nanorods exhibit pronounced multistability. This current switching is analogous to the widely observed fluorescence intermittency in similar systems and may be associated with surface charge dynamics. Such association is quantitatively established for the case when the current is bistable, where the probability of the sojourn time t at the high or low current state follows an exponential dependence. Remarkably, this behavior can be modeled by charging dynamics of a single surface trap, whose position could be estimated from the intermittent current-voltage characteristics. The methodology presented here provides a unique route for charge dynamic sensing at the nanoscale, where the nanorod senses its own surface charge.

9.
Phys Chem Chem Phys ; 12(25): 6774-81, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20431834

ABSTRACT

Thin films of porous silicon (PS), structurally characterized by HR-SEM, were studied using xenon Temperature Programmed Desorption (TPD) as a probe of its inner pores. Geometric hindrance of the depth desorbing population and multiple wall collisions result in a unique double-peak structure of the TPD curve. Surface-diffusion assisted adsorption mechanism into inner pores at 48 K is proposed as the origin of these unique TPD spectra. It is experimentally verified by mild Ne(+) sputtering prior to TPD which preferentially removes Xe population from the top surfaces. A pore-diameter limited desorption kinetic model that takes into account diffusion and pore depth well explains the governing parameters that determine the experimental observations. These results suggest that TPD may be employed as a highly sensitive, non-destructive surface area determination tool.

10.
Nano Lett ; 9(11): 3671-5, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19691333

ABSTRACT

We report wiring of individual colloidal nanorods (NRs), 30-60 nm long by 3.5-5 nm diameter. Strong electrical coupling is achieved by electron beam induced deposition (EBID) of metallic lines targeting NR tips with nanometric precision. At T = 4 K many devices exhibit smooth I(V) curves with no sharp onset features, which remarkably fit a Fowler-Nordheim tunneling model. All devices exhibit an anomalous exponential temperature dependence of the form I approximately exp(T/T(0)). This irregular behavior cannot be explained by any hopping or activation model and is interpreted by accounting for the lowering of the NR conduction band due to lattice dilation and phonon coupling.

11.
Nano Lett ; 9(6): 2322-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19507888

ABSTRACT

Using temperature driven sharp metal-insulator phase transition in single crystal VO(2) nanowires, the realization of a novel gas sensing concept has been tested. Varying the temperature of the nanowire close to the transition edge, the conductance of the nanowire becomes extremely responsive to the tiny changes in molecular composition, pressure, and temperature of the ambient gas environment. This gas sensing analog of the transition edge sensor radiometry used in astrophysics opens new opportunities in gas sensorics.

12.
Opt Lett ; 34(11): 1669-71, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19488143

ABSTRACT

We experimentally demonstrate vector beams having an elliptical symmetry of polarization, breaking the cylindrical symmetry of vector beams (e.g., radially polarized beams). Applications of such beams vary from material processing, lithography, and optical memories to excitation of elliptically shaped nanoparticles and plasmonic structures.

13.
Phys Rev Lett ; 98(1): 016105, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17358492

ABSTRACT

Water on Pt(111) is generally thought to be nondissociative. However, by adsorbing a thick ice film [>150 monolayers (ML)], substantial (approximately 0.16 to 1 ML) dissociation of the "buried water" occurs for T>151 K. New temperature-programmed desorption peaks signal the dissociation (after careful isothermal predesorption of the overlying ice films). The buried water likely dissociates via the elevated temperatures and/or solvation changes experienced under the ice. Dissociation charges the growing ice film (up to +9 V) due to trapping of approximately 0.007 ML H3O+ at the vacuum-ice interface.

14.
Nano Lett ; 5(10): 2019-22, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16218730

ABSTRACT

Programmable control over the overall structure of SnO(2) nanowires grown by vapor-solid synthesis is shown to be possible by pulse modulating the flow rate of the carrier gas in which oxygen (one of the reactants) is entrained. The control is shown to depend on the local oscillation of the supersaturation condition for the SnO vapor (another reactant) in the vicinity of the growing nanostructure. The latter triggers dramatic, reproducible oscillations in the lateral dimensions of the nanostructure and in the direction of its growth. The method provides a means for producing predictable morphological and compositional variations in 1D nanostructures, thereby potentially resulting in a high yield of custom-designed nanostructures.

15.
J Chem Phys ; 122(8): 81102, 2005 Feb 22.
Article in English | MEDLINE | ID: mdl-15836012

ABSTRACT

Mass-selected Ag(n) (+) (n=1,2,3) clusters with impact energy less than 2 eV per atom were deposited from the gas phase onto rutile titania (110)-(1x1) single crystal surfaces at room temperature and imaged using ultra-high vacuum scanning tunneling microscopy. Upon reaching the surface, Ag monomers sintered to form three-dimensional islands of approximately 50 atoms in size, with an average measured height of 7.5 A and diameter of 42 A. This suggests that the monomers are highly mobile on the titania surface at room temperature. Dimers also sintered to form large clusters upon deposition, approximately 30 atoms in size, with an average height of 6.2 A and diameter of 33 A. Clusters formed from monomer deposition appeared approximately three times more frequently at step edges than clusters formed from dimer deposition, indicating that the surface mobility of deposited monomers is higher than that of deposited dimers. In sharp contrast to the deposition of monomers and dimers, the deposition of trimers resulted in a high density of very small clusters on the order of a few atoms in size, indicative of intact trimers on the surface, implying that deposited trimers have very limited mobility on the surface at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...