Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 86(7)2018 07.
Article in English | MEDLINE | ID: mdl-29685987

ABSTRACT

Streptococcus agalactiae (group B Streptococcus [GBS]) is often a commensal bacterium that colonizes healthy adults asymptomatically and is a frequent inhabitant of the vaginal tract in women. However, in immunocompromised individuals, particularly the newborn, GBS may transition to an invasive pathogen and cause serious disease. Despite the use of the currently recommended intrapartum antibiotic prophylaxis for GBS-positive mothers, GBS remains a leading cause of neonatal septicemia and meningitis. To adapt to the various host environments encountered during its disease cycle, GBS possesses multiple two-component regulatory systems (TCSs). Here we investigated the contribution of a transcriptional regulator containing a LytTR domain, LtdR, to GBS pathogenesis. Disruption of the ltdR gene in the GBS chromosome resulted in a significant increase in bacterial invasion into human cerebral microvascular endothelial cells (hCMEC) in vitro as well as the greater penetration of the blood-brain barrier (BBB) and the development of meningitis in vivo Correspondingly, infection of hCMEC with the ΔltdR mutant resulted in increased secretion of the proinflammatory cytokines interleukin-8 (IL-8), CXCL-1, and IL-6. Further, using a mouse model of GBS vaginal colonization, we observed that the ΔltdR mutant was cleared more readily from the vaginal tract and also that infection with the ΔltdR mutant resulted in increased cytokine production from human vaginal epithelial cells. RNA sequencing revealed global transcriptional differences between the ΔltdR mutant and the parental wild-type GBS strain. These results suggest that LtdR regulates many bacterial processes that can influence GBS-host interactions to promote both bacterial persistence and disease progression.


Subject(s)
Streptococcal Infections/genetics , Streptococcal Infections/physiopathology , Transcriptional Activation/genetics , Transcriptional Activation/physiology , Virulence/genetics , Virulence/physiology , Animals , Gene Expression Regulation, Bacterial , Humans , Mice
2.
BMC Genomics ; 9: 607, 2008 Dec 16.
Article in English | MEDLINE | ID: mdl-19087320

ABSTRACT

BACKGROUND: Streptococcus agalactiae (group B Streptococcus; GBS) is a significant bacterial pathogen of neonates and an emerging pathogen of adults. Though transcriptional regulators are abundantly encoded on the GBS genome, their role in GBS pathogenesis is poorly understood. The mtaR gene encodes a putative LysR-type transcriptional regulator that is critical for the full virulence of GBS. Previous studies have shown that an mtaR- mutant transports methionine at reduced rates and grows poorly in normal human plasma not supplemented with methionine. The decreased virulence of the mtaR mutant was correlated with a methionine transport defect; however, no MtaR-regulated genes were identified. RESULTS: Microarray analysis of wild-type GBS and an mtaR mutant revealed differential expression of 12 genes, including 1 upregulated and 11 downregulated genes in the mtaR mutant. Among the downregulated genes, we identified a cluster of cotranscribed genes encoding a putative methionine transporter (metQ1NP) and peptidase (pdsM). The expression of four genes potentially involved in arginine transport (artPQ) and arginine biosynthesis (argGH) was downregulated and these genes localized to two transcriptional units. The virulence factor cspA, which encodes an extracellular protease, was downregulated. Additionally, the SAN_1255 locus, which putatively encodes a protein displaying similarity to plasminogen activators, was downregulated. CONCLUSION: To our knowledge, this is the first study to describe the global influence of MtaR on GBS gene expression. This study implicates the metQ1NP genes as encoding the MtaR-regulated methionine transporter, which may provide a mechanistic explanation for the methionine-dependent growth defect of the mtaR mutant. In addition to modulating the expression of genes involved in metabolism and amino acid transport, inactivation of mtaR affected the expression of other GBS genes implicated in pathogenesis. These findings suggest the possibility that MtaR may play a multifaceted role in GBS pathogenesis by regulating the expression of numerous genes.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Streptococcus agalactiae/genetics , Transcription Factors/metabolism , Arginine/metabolism , Bacterial Proteins/genetics , Chromosome Mapping , Genes, Bacterial , Methionine/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Bacterial/genetics , Streptococcus agalactiae/metabolism , Transcription Factors/genetics , Transcription, Genetic , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...