Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
2.
J Nucl Med ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39299783

ABSTRACT

[177Lu]Lu-PSMA-617 was approved by the U.S. Food and Drug Administration for patients with prostate-specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC). Since the time of regulatory approval, however, real-world data have been lacking. This study investigated the efficacy, safety, and outcome predictors of [177Lu]Lu-PSMA-617 at a major U.S. academic center. Methods: Patients with mCRPC who received [177Lu]Lu-PSMA-617 at the Johns Hopkins Hospital outside clinical trials were screened for inclusion. Patients who underwent [177Lu]Lu-PSMA-617 and had available outcome data were included in this study. Outcome data included prostate-specific antigen (PSA) response (≥50% decline), PSA progression-free survival (PFS), and overall survival (OS). Toxicity data were evaluated according to the Common Terminology Criteria for Adverse Events version 5.03. The study tested the association of baseline circulating tumor DNA mutational status in homologous recombination repair, PI3K alteration pathway, and aggressive-variant prostate cancer-associated genes with treatment outcome. Baseline PSMA PET/CT images were analyzed using SelectPSMA, an artificial intelligence algorithm, to predict treatment outcome. Associations with the observed treatment outcome were evaluated. Results: All 76 patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 met the inclusion criteria. A PSA response was achieved in 30 of 74 (41%) patients. The median PSA PFS was 4.1 mo (95% CI, 2.0-6.2 mo), and the median OS was 13.7 mo (95% CI, 11.3-16.1 mo). Anemia of grade 3 or greater, thrombocytopenia, and neutropenia were observed in 9 (12%), 3 (4%), and 1 (1%), respectively, of 76 patients. Transient xerostomia was observed in 23 (28%) patients. The presence of aggressive-variant prostate cancer-associated genes was associated with a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P = 0.040). No other associations were observed between circulating tumor DNA mutational status and treatment outcomes. Eighteen of 71 (25%) patients classified by SelectPSMA as nonresponders had significantly lower rates of PSA response than patients classified as likely responders (6% vs. 51%; P < 0.001), a shorter PSA PFS (median, 1.3 vs. 6.3 mo; P < 0.001), and a shorter OS (median, 6.3 vs. 14.5 mo; P = 0.046). Conclusion: [177Lu]Lu-PSMA-617 offered in a real-world setting after regulatory approval in the United States demonstrated antitumor activity and a favorable toxicity profile. Artificial-intelligence-based analysis of baseline PSMA PET/CT images may improve patient selection. Validation of these findings on larger cohorts is warranted.

3.
J Nucl Med ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327018

ABSTRACT

The phase 3 VISION trial demonstrated that [177Lu]Lu-PSMA-617 prolonged progression-free survival and overall survival (OS) in prostate-specific membrane antigen [PSMA]-positive metastatic castration-resistant prostate cancer (mCRPC) patients who progressed on taxane-based chemotherapy and androgen receptor-signaling inhibitors (ARSIs). The U.S. expanded-access program (EAP; NCT04825652) was opened to provide access to [177Lu]Lu-PSMA-617 for eligible patients until regulatory approval was obtained. This study aimed to evaluate the efficacy and safety profile of [177Lu]Lu-PSMA-617 within the EAP and compare the results with those from the VISION trial. Methods: Patients enrolled in the EAP at 4 institutions in the United States with available toxicity and outcome data were included. Outcome measures included OS, a prostate-specific antigen (PSA) response rate (RR) of at least 50%, and incidences of toxicity according to Common Terminology Criteria for Adverse Events version 5.0. Differences in baseline characteristics, outcome data, and toxicity between the EAP and VISION were evaluated using t testing of proportions and survival analyses. Results: In total, 117 patients with mCRPC who received [177Lu]Lu-PSMA-617 within the EAP between May 2021 and March 2022 were eligible and included in this analysis. Patients enrolled in the EAP were more heavily pretreated with ARSI (≥2 ARSI regimens: 70% vs. 46%; P < 0.001) and had worse performance status at baseline (Eastern Cooperative Oncology Group score ≥ 2: 19% vs. 7%; P < 0.001) than VISION patients. EAP and VISION patients had similar levels of grade 3 or higher anemia (18% vs. 13%; P = 0.15), thrombocytopenia (13% vs. 8%; P = 0.13), and neutropenia (3% vs. 3%; P = 0.85) and similar PSA RRs (42% vs. 46%; P = 0.50) and OS (median: 15.1 vs. 15.3 mo; P > 0.05). Conclusion: Patients with PSMA-positive mCRPC who received [177Lu]Lu-PSMA-617 within the EAP were later in their disease trajectory than VISION patients. Patients enrolled in the EAP achieved similar PSA RRs and OS and had a safety profile similar to that of the VISION trial patients.

4.
Front Oncol ; 14: 1432286, 2024.
Article in English | MEDLINE | ID: mdl-39324008

ABSTRACT

Introduction: Renal cell carcinoma (RCC) represents cancer originating from the renal epithelium and accounts for > 90% of cancers in the kidney. Prostate-specific membrane antigen (PSMA) is overexpressed in tumor-associated neovascular endothelial cells of many solid tumors, including metastatic RCC. Although studied in several small clinical studies, PSMA-based imaging and therapy have not been pursued rigorously in preclinical RCC. This study aimed to evaluate the preclinical performance of PSMA-based radiotheranostic agents in a relevant murine model. Methods: A PSMA-overexpressing murine cell line, PSMA+ RENCA, was developed by lentiviral transduction. PSMA-based theranostic agents, 68Ga-L1/177Lu-L1/225Ac-L1, were synthesized in high radiochemical yield and purity following our reported methods. Immunocompetent BALB/c mice were used for flank and orthotopic tumor inoculation. 68Ga-L1 was evaluated in small animal PET/CT imaging in flank and PET/MR imaging in orthotopic models. Cell viability studies were conducted for 177Lu-L1 and 225Ac-L1. Proof-of-concept treatment studies were performed using 225Ac-L1 (0, 37 kBq, 2 kBq × 37 kBq, 1 week apart) using PSMA+ RENCA in the flank model. Results: Cellular uptake of 68Ga-L1, 177Lu-L1, and 225Ac-L1 confirmed the specificity of the agents to PSMA+ RENCA cells rather than to RENCA (wt) cells, which are low in PSMA expression. The uptake in PSMA+ RENCA cells at 1 h for 68Ga-L1 (49.0% incubated dose [ID] ± 3.6%ID/million cells), 177Lu-L1 (22.1%ID ± 0.5%ID)/million cells), and 225Ac-L1 (4.1% ± 0.2% ID)/million cells), respectively, were higher than the RENCA (wt) cells (~ 1%ID-2%ID/million cells). PET/CT images displayed > 7-fold higher accumulation of 68Ga-L1 in PSMA+ RENCA compared to RENCA (wt) in flank implantation at 1 h. A twofold higher accumulation of 68Ga-L1 was observed in orthotopic tumors than in normal kidneys during 1-3 h postinjection. High lung uptake was observed with 68Ga-L1 PET/MR imaging 3 weeks after orthotopic implantation of PSMA+ RENCA due to spontaneous lung metastases. The imaging data were further confirmed by immunohistochemical characterization. 225Ac-L1 (0-37 kBq) displayed a dose-dependent reduction of cell proliferation in the PSMA+ RENCA cells after 48 h incubation; ~ 40% reduction in the cells with treated 37 kBq compared to vehicle (p < 0.001); however, no effect was observed with 177Lu-L1 (0-3700 kBq) up to 144 h postinoculation, suggesting lower efficacy of ß-particle-emitting radiations in cellular studies compared to α-particle-emitting 225Ac-L1. Animals treated with 225Ac-L1 at 1 week posttumor inoculation in flank models displayed significant tumor growth delay (p < 0.03) and longer median survival of 21 days and 24 days for the treatment groups 37 kBq and 2 kBq × 37 kBq, respectively, compared to the vehicle group (12 days). Conclusion: The results suggest that a theranostic strategy targeting PSMA, employing PET and α-emitting radiopharmaceuticals, enabled tumor growth control and enhanced survival in a relevant immunocompetent murine model of RCC. These studies provide the rationale for clinical studies of PSMA-targeted theranostic agents in patients with RCC.

5.
Mol Imaging Biol ; 26(5): 768-773, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39078524

ABSTRACT

PURPOSE: Indeterminate renal masses are increasingly incidentally found on cross-sectional imaging. 99mTc-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) scans can be used to identify oncocytomas and oncocytic renal neoplasms, including a subset of chromophobe renal cell carcinomas (chRCCs), which are viewed as false-positive. PROCEDURE: Patients imaged with renal sestamibi scans between 2014 and 2023 were reviewed. Those patients with solitary tumors that were originally classified as chRCC were included in the analysis. Imaging with SPECT/CT from the liver dome down had been carried out 75 min after the administration of 925 MBq of 99mTc-sestamibi. All available H&E and immunostained slides were re-reviewed and classified according to WHO 2022 criteria. Confirmatory immunohistochemical stains were performed in tumors considered morphologically suspicious for non-chRCC entities. RESULT: A total of 18 patients with solitary tumors were included in the final analysis. 13/18 (72.2%) tumors in this cohort remained classified as chRCC, with 4/18 (22.2%) being eosinophilic-variant chRCC. The reclassified tumors (5/18 [27.8%]) included 2/18 (11.1%) low-grade oncocytic tumor (LOT), 1/18 (5.5%) eosinophilic vacuolated tumor (EVT), and 2/18 (11.1%) unclassified low-grade oncocytic neoplasms. As such, only 2/9 (22.2%) qualitatively "hot" tumors were chRCC other than eosinophilic-variant and only 1/9 (11.1%) "cold" tumors was a histology other than chRCC. CONCLUSION: Based on current histopathologic classification methods, it is likely that the "false-positive" rate of uptake on renal sestamibi scans with chRCC has been over-stated. Further study is warranted to better refine the optimal utility of renal sestamibi scans for non-invasive risk stratification of indeterminate renal masses.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Single Photon Emission Computed Tomography Computed Tomography , Technetium Tc 99m Sestamibi , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Male , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Kidney Neoplasms/classification , Female , Middle Aged , Aged , Risk Assessment , Aged, 80 and over , Adult
6.
J Nucl Med ; 65(9): 1423-1426, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38991754

ABSTRACT

177Lu-DOTATATE is an effective second-line treatment for metastatic or nonresectable neuroendocrine tumors. This treatment can result in hematologic severe adverse reactions (SARs). Preemptive identification of patients at risk of SARs could mitigate this risk and improve treatment safety and outcomes. Methods: Demographic and oncologic history, pretreatment laboratory values, and SAR frequency were obtained for 126 sequential patients treated with 177Lu-DOTATATE. Univariable and multivariable logistic regression models identified factors correlating with SARs. Results: Relative pretreatment anemia, leukopenia, thrombocytopenia, and elevated mean corpuscular volume (MCV) were significantly correlated with SARs, with an odds ratio of 16 (95% CI, 5-65) in patients with an MCV greater than 95 fL. Conclusion: Pretreatment bone marrow dyscrasias, including an MCV greater than 95 fL, may predict patients at risk for SARs when treated with 177Lu-DOTATATE. Further study is needed to determine whether the risks of SARs outweigh the benefit in these patients.


Subject(s)
Erythrocyte Indices , Neuroendocrine Tumors , Octreotide , Organometallic Compounds , Humans , Octreotide/analogs & derivatives , Octreotide/therapeutic use , Octreotide/adverse effects , Organometallic Compounds/therapeutic use , Organometallic Compounds/adverse effects , Female , Male , Middle Aged , Aged , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/blood , Adult , Hematologic Diseases/etiology , Aged, 80 and over , Retrospective Studies
7.
Diagn Interv Imaging ; 105(9): 305-310, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39054210

ABSTRACT

Anatomic imaging with contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) has long been the mainstay of renal mass characterization. However, those modalities are often unable to adequately characterize indeterminate, solid, enhancing renal masses - with some exceptions, such as the development of the clear-cell likelihood score on multi-parametric MRI. As such, molecular imaging approaches have gained traction as an alternative to anatomic imaging. Mitochondrial imaging with 99mTc-sestamibi single-photon emission computed tomography/CT is a cost-effective means of non-invasively identifying oncocytomas and other indolent renal masses. On the other end of the spectrum, carbonic anhydrase IX agents, most notably the monoclonal antibody girentuximab - which can be labeled with positron emission tomography radionuclides such as zirconium-89 - are effective at identifying renal masses that are likely to be aggressive clear cell renal cell carcinomas. Renal mass biopsy, which has a relatively high non-diagnostic rate and does not definitively characterize many oncocytic neoplasms, nonetheless may play an important role in any algorithm targeted to renal mass risk stratification. The combination of molecular imaging and biopsy in selected patients with other advanced imaging methods, such as artificial intelligence/machine learning and the abstraction of radiomics features, offers the optimal way forward for maximization of the information to be gained from risk stratification of indeterminate renal masses. With the proper application of those methods, inappropriately aggressive therapy for benign and indolent renal masses may be curtailed.


Subject(s)
Kidney Neoplasms , Molecular Imaging , Humans , Kidney Neoplasms/diagnostic imaging , Molecular Imaging/methods , Risk Assessment , Carcinoma, Renal Cell/diagnostic imaging , Adenoma, Oxyphilic/diagnostic imaging , Radiopharmaceuticals , Antibodies, Monoclonal
8.
Clin Nucl Med ; 49(9): e436-e438, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38914020

ABSTRACT

ABSTRACT: With the increase in use of GLP-1 receptor agonists such as semaglutide (Ozempic, Wegovy, Rybelsus) in the population, nuclear medicine physicians should be aware of the possibility of nondiagnostic FDG PET scans due to these medications, which work partly by increasing insulin secretion. We demonstrate a case where a patient's use of such a medication presumptively led to muscular and myocardial uptake, complicating scan interpretation considerably. Clinicians should be aware of the presence of these drugs and their potential effect on biodistribution in FDG PET. Further study is needed to best understand the effects of these medications on FDG biodistribution.


Subject(s)
Fluorodeoxyglucose F18 , Positron-Emission Tomography , Humans , Fluorodeoxyglucose F18/pharmacokinetics , Insulin , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide 1 , Male , Middle Aged , Female
10.
PET Clin ; 19(3): 363-369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705743

ABSTRACT

Prostate-specific membrane antigen targeting positron emission tomography (PSMA-PET) is routinely used for the staging and restaging of patients with various stages of prostate cancer. For clear communication with referring physicians and to improve inter-reader agreement, the use of standardized reporting templates is mandatory. Increasingly, tumor volume is used by reporting and response assessment frameworks to prognosticate patient outcome or measure response to therapy. However, the quantification of tumor volume is often too time-consuming in routine clinical practice. Machine learning-based tools can facilitate the quantification of tumor volume for improved outcome prognostication.


Subject(s)
Machine Learning , Prostatic Neoplasms , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Male , Positron-Emission Tomography/methods , Glutamate Carboxypeptidase II , Antigens, Surface , Neoplasm Staging
11.
Radiographics ; 44(6): e230127, 2024 06.
Article in English | MEDLINE | ID: mdl-38814800

ABSTRACT

Various radiologic examinations and other diagnostic tools exist for evaluating gastrointestinal diseases. When symptoms of gastrointestinal disease persist and no underlying anatomic or structural abnormality is identified, the diagnosis of functional gastrointestinal disorder is frequently applied. Given its physiologic and quantitative nature, scintigraphy often plays a central role in the diagnosis and treatment of patients with suspected functional gastrointestinal disorder. Most frequently, after functional gallbladder disease is excluded, gastric emptying scintigraphy (GES) is considered the next step in evaluating patients with suspected gastric motility disorder who present with upper gastrointestinal symptoms such as dyspepsia or bloating. GES is the standard modality for detecting delayed gastric emptying (gastroparesis) and the less commonly encountered clinical entity, gastric dumping syndrome. Additionally, GES can be used to assess abnormalities of intragastric distribution, suggesting specific disorders such as impaired fundal accommodation or antral dysfunction, as well as to evaluate gastric emptying of liquid. More recently, scintigraphic examinations for evaluating small bowel and large bowel transit have been developed and validated for routine diagnostic use. These can be performed individually or as part of a comprehensive whole-gut transit evaluation. Such scintigraphic examinations are of particular importance because clinical assessment of suspected functional gastrointestinal disorder frequently fails to accurately localize the site of disease, and those patients may have motility disorders involving multiple portions of the gastrointestinal tract. The authors comprehensively review the current practice of gastrointestinal transit scintigraphy, with diseases and best imaging practices illustrated by means of case review. ©RSNA, 2024 See the invited commentary by Maurer and Parkman in this issue.


Subject(s)
Gastrointestinal Diseases , Gastrointestinal Transit , Radionuclide Imaging , Humans , Radionuclide Imaging/methods , Gastrointestinal Transit/physiology , Gastrointestinal Diseases/diagnostic imaging , Gastrointestinal Motility/physiology , Adult , Gastric Emptying/physiology
12.
J Nucl Med ; 65(6): 917-922, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38637143

ABSTRACT

Response Evaluation Criteria in Prostate-Specific Membrane Antigen Imaging (RECIP) 1.0 is an evidence-based framework to evaluate therapeutic efficacy in metastatic prostate cancer using prostate-specific membrane antigen (PSMA) PET/CT. This study aimed to evaluate the associations of interim PSMA PET/CT by RECIP 1.0 with short-term outcome after radiopharmaceutical treatment. Methods: This multicenter retrospective study included patients with metastatic castration-resistant prostate cancer who underwent [177Lu]Lu-PSMA radiopharmaceutical therapy at 3 academic centers and received PSMA PET/CT at baseline and at 12 wk. Pairs of PSMA PET/CT images were assessed by 5 readers for visual RECIP 1.0. The primary outcome was the association of RECIP with prostate-specific antigen progression-free survival (PSA-PFS) by Kaplan-Meier analysis. Results: In total, 124 of 287 screened patients met the inclusion criteria, with 0 (0%), 29 (23%), 54 (44%), and 41 (33%) of those 124 patients having complete response, partial response, stable disease, or progressive disease (PD) by visual RECIP 1.0, respectively. Patients with visual RECIP PD had a significantly shorter PSA-PFS than those with RECIP stable disease or with RECIP partial response (2.6 vs. 6.4 vs. 8.4 mo; P < 0.001). The median PSA-PFS among patients with RECIP PD versus those with non-RECIP PD was 2.6 versus 7.2 mo (hazard ratio, 13.0; 95% CI, 7.0-24.1; P < 0.001). Conclusion: PSMA PET/CT by RECIP 1.0 after 2 cycles of [177Lu]Lu-PSMA is prognostic for PSA-PFS. PSMA PET/CT by RECIP 1.0 may be used in earlier stages of prostate cancer to evaluate drug efficacy and to predict progression-free survival.


Subject(s)
Lutetium , Neoplasm Metastasis , Positron Emission Tomography Computed Tomography , Progression-Free Survival , Prostatic Neoplasms, Castration-Resistant , Radiopharmaceuticals , Humans , Male , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Radiopharmaceuticals/therapeutic use , Retrospective Studies , Lutetium/therapeutic use , Middle Aged , Aged, 80 and over , Glutamate Carboxypeptidase II/metabolism , Prostate-Specific Antigen/blood , Antigens, Surface/metabolism , Treatment Outcome , Heterocyclic Compounds, 1-Ring/therapeutic use , Radioisotopes
13.
Ann Clin Transl Neurol ; 11(5): 1211-1223, 2024 May.
Article in English | MEDLINE | ID: mdl-38453690

ABSTRACT

OBJECTIVE: Brain 18F-FDG PET/CT is a useful diagnostic in evaluating patients with suspected autoimmune encephalitis (AE). Specific patterns of brain dysmetabolism have been reported in anti-NMDAR and anti-LGI1 AE, and the degree of dysmetabolism may correlate with clinical functional status.18FDG-PET/CT abnormalities have not yet been described in seronegative AE. METHODS: We conducted a cross-sectional analysis of brain18FDG-PET/CT data in people with seronegative AE treated at the Johns Hopkins Hospital. Utilizing NeuroQ™ software, the Z-scores of 47 brain regions were calculated relative to healthy controls, then visually and statistically compared for probable and possible AE per clinical consensus diagnostic criteria to previous data from anti-NMDAR and anti-LGI1 cohorts. RESULTS: Eight probable seronegative AE and nine possible seronegative AE were identified. The group only differed in frequency of abnormal brain MRI, which was seen in all of the probable seronegative AE patients. Both seronegative groups had similar overall patterns of brain dysmetabolism. A common pattern of frontal lobe hypometabolism and medial temporal lobe hypermetabolism was observed in patients with probable and possible seronegative AE, as well as anti-NMDAR and anti-LGI1 AE as part of their respective characteristic patterns of dysmetabolism. Four patients had multiple brain18FDG-PET/CT scans, with changes in number and severity of abnormal brain regions mirroring clinical status. CONCLUSIONS: A18FDG-PET/CT pattern of frontal lobe hypometabolism and medial temporal lobe hypermetabolism could represent a common potential biomarker of AE, which along with additional clinical data may facilitate earlier diagnosis and treatment.


Subject(s)
Encephalitis , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Female , Male , Adult , Middle Aged , Cross-Sectional Studies , Encephalitis/diagnostic imaging , Encephalitis/immunology , Encephalitis/diagnosis , Brain/diagnostic imaging , Hashimoto Disease/diagnostic imaging , Aged , Young Adult
14.
PET Clin ; 19(2): 249-260, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199914

ABSTRACT

This article provides a comprehensive review of the role of 2-deoxy-2-[18F]fluoro-d-glucose (18F FDG) positron emission tomography/computed tomography (PET/CT) in multiple myeloma (MM) and related plasma cell disorders. MM is a hematologic malignancy characterized by the neoplastic proliferation of plasma cells. 18F FDG PET/CT integrates metabolic and anatomic information, allowing for accurate localization of metabolically active disease. The article discusses the use of 18F FDG PET/CT in initial diagnosis, staging, prognostication, and assessing treatment response. Additionally, it provides valuable insights into the novel imaging targets including chemokine receptor C-X-C motif 4 and CD38.


Subject(s)
Multiple Myeloma , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Multiple Myeloma/diagnostic imaging , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Positron-Emission Tomography/methods
15.
PET Clin ; 19(2): 197-206, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199916

ABSTRACT

Renal cell carcinoma (RCC) and urothelial carcinoma (UC) are two of the most common genitourinary malignancies. 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) can play an important role in the evaluation of patients with RCC and UC. In addition to the clinical utility of 18F-FDG PET to evaluate for metastatic RCC or UC, the shift in molecular imaging to focus on specific ligand-receptor interactions should provide novel diagnostic and therapeutic opportunities in genitourinary malignancies. In combination with the rise of artificial intelligence, our ability to derive imaging biomarkers that are associated with treatment selection, response assessment, and overall patient prognostication will only improve.


Subject(s)
Carcinoma, Renal Cell , Carcinoma, Transitional Cell , Kidney Neoplasms , Urinary Bladder Neoplasms , Urologic Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/secondary , Fluorodeoxyglucose F18 , Carcinoma, Transitional Cell/diagnostic imaging , Artificial Intelligence , Urinary Bladder Neoplasms/therapy , Kidney , Urologic Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , Positron-Emission Tomography/methods , Kidney Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography
16.
J Nucl Med ; 65(1): 87-93, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38050147

ABSTRACT

This study aimed to assess the accuracy of intraprostatic tumor volume measurements on prostate-specific membrane antigen-targeted 18F-DCFPyL PET/CT made with various segmentation methods. An accurate understanding of tumor volumes versus segmentation techniques is critical for therapy planning, such as radiation dose volume determination and response assessment. Methods: Twenty-five men with clinically localized, high-risk prostate cancer were imaged with 18F-DCFPyL PET/CT before radical prostatectomy. The tumor volumes and tumor-to-prostate ratios (TPRs) of dominant intraprostatic foci of uptake were determined using semiautomatic segmentation (applying SUVmax percentage [SUV%] thresholds of SUV30%-SUV70%), adaptive segmentation (using adaptive segmentation percentage [A%] thresholds of A30%-A70%), and manual contouring. The histopathologic tumor volume (TV-Histo) served as the reference standard. The significance of differences between TV-Histo and PET-based tumor volume were assessed using the paired-sample Wilcoxon signed-rank test. The Spearman correlation coefficient was used to establish the strength of the association between TV-Histo and PET-derived tumor volume. Results: Median TV-Histo was 2.03 cm3 (interquartile ratio [IQR], 1.16-3.36 cm3), and median TPR was 10.16%. The adaptive method with an A40% threshold most closely determined the tumor volume, with a median difference of +0.19 (IQR, -0.71 to +2.01) and a median relative difference of +7.6%. The paired-sample Wilcoxon test showed no significant difference in PET-derived tumor volume and TV-Histo using A40%, A50%, SUV40%, and SUV50% threshold segmentation algorithms (P > 0.05). For both threshold-based segmentation methods, use of higher thresholds (e.g., SUV60% or SUV70% and A50%-A70%) resulted in underestimation of tumor volumes, and use of lower thresholds (e.g., SUV30% or SUV40% and A30%) resulted in overestimation of tumor volumes relative to TV-Histo and TPR. Manual segmentation overestimated the tumor volume, with a median difference of +2.49 (IQR, 0.42-4.11) and a median relative difference of +130%. Conclusion: Segmentation of intraprostatic tumor volume and TPR with an adaptive segmentation approach most closely approximates TV-Histo. This information might be used to guide the primary treatment of men with clinically localized, high-risk prostate cancer.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Prostate/pathology , Prostatic Neoplasms/pathology , Prostatectomy , Algorithms
17.
Semin Nucl Med ; 54(1): 119-131, 2024 01.
Article in English | MEDLINE | ID: mdl-37980186

ABSTRACT

Prostate-specific membrane antigen (PSMA)-targeted PET agents have revolutionized the care of patients with prostate cancer, supplanting traditional methods of imaging prostate cancer, and improving the selection and delivery of therapies. This has led to a rapid expansion in both the number of PSMA PET scans performed and the imaging specialists required to interpret those scans. To aid those imagers and clinicians who are new to the interpretation of PSMA PET, this review provides an overview of the interpretation of PSMA PET/CT imaging and pearls for overcoming commonly encountered pitfalls. We discuss the physiologic distribution of the clinically available PSMA-targeted radiotracers, the commonly encountered patterns of prostate cancer spread, as well as the benign and malignant mimics of prostate cancer. Additionally, we review the standardized PSMA PET reporting systems and the role of PSMA in selecting appropriate patients for PSMA-targeted therapies.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Diagnostic Imaging , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
18.
J Infect Dis ; 228(Suppl 4): S241-S248, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37788504

ABSTRACT

Evaluation of patients that may be infected is challenging. Imaging to identify or localize a site of infection is often limited because of the nonspecific nature of the findings on conventional imaging modalities. Available imaging methods lack the ability to determine if antibiotics are reaching the site of infection and are not optimized to follow response to therapy. Positron emission tomography (PET) is a method by which radiolabeled molecules can be used to detect metabolic perturbations or levels of expression of specific targets. The most common PET agent is the glucose analog 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). 18F-FDG has some applicability to localizing a site of infection, but its lack of specificity limits its usefulness. There is a need for the development of pathogen-specific PET radiotracers to address the imaging shortcomings noted above. Preclinical and clinical progress has been made, but significant challenges remain.


Subject(s)
Fever of Unknown Origin , Fluorodeoxyglucose F18 , Humans , Radiopharmaceuticals , Tomography, X-Ray Computed/adverse effects , Tomography, X-Ray Computed/methods , Fever of Unknown Origin/diagnosis , Fever of Unknown Origin/etiology , Positron-Emission Tomography/methods , Molecular Imaging/adverse effects
19.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37793856

ABSTRACT

BACKGROUND: Combination therapies that aim to improve the clinical efficacy to immune checkpoint inhibitors have led to the need for non-invasive and early pharmacodynamic biomarkers. Positron emission tomography (PET) is a promising non-invasive approach to monitoring target dynamics, and programmed death-ligand 1 (PD-L1) expression is a central component in cancer immunotherapy strategies. [18F]DK222, a peptide-based PD-L1 imaging agent, was investigated in this study using humanized mouse models to explore the relationship between PD-L1 expression and therapy-induced changes in cancer. METHODS: Cell lines and xenografts derived from three non-small cell lung cancers (NSCLCs) and three urothelial carcinomas (UCs) were used to validate the specificity of [18F]DK222 for PD-L1. PET was used to quantify anti-programmed cell death protein-1 (PD-1) therapy-induced changes in PD-L1 expression in tumors with and without microsatellite instability (MSI) in humanized mice. Furthermore, [18F]DK222-PET was used to validate PD-L1 pharmacodynamics in the context of monotherapy and combination immunotherapy in humanized mice bearing A375 melanoma xenografts. PET measures of PD-L1 expression were used to establish a relationship between pathological and immunological changes. Lastly, spatial distribution analysis of [18F]DK222-PET was developed to assess the effects of different immunotherapy regimens on tumor heterogeneity. RESULTS: [18F]DK222-PET and biodistribution studies in mice with NSCLC and UC xenografts revealed high but variable tumor uptake at 60 min that correlated with PD-L1 expression. In MSI tumors treated with anti-PD-1, [18F]DK222 uptake was higher than in control tumors. Moreover, [18F]DK222 uptake was higher in A375 tumors treated with combination therapy compared with monotherapy, and negatively correlated with final tumor volumes. In addition, a higher number of PD-L1+ cells and higher CD8+-to-CD4+ cell ratio was observed with combination therapy compared with monotherapy, and positively correlated with PET. Furthermore, spatial distribution analysis showed higher [18F]DK222 uptake towards the core of the tumors in combination therapy, indicating a more robust and distinct pattern of immune cell infiltration. CONCLUSION: [18F]DK222-PET has potential as a non-invasive tool for monitoring the effects of immunotherapy on tumors. It was able to detect variable PD-L1 expression in tumors of different cancer types and quantify therapy-induced changes in tumors. Moreover, [18F]DK222-PET was able to differentiate the impact of different therapies on tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , B7-H1 Antigen , Tissue Distribution , Positron-Emission Tomography/methods , Immunotherapy/methods
20.
J Nucl Med ; 64(11): 1690-1696, 2023 11.
Article in English | MEDLINE | ID: mdl-37652539

ABSTRACT

Predictive biomarkers of response to human epidermal growth factor receptor 2 (HER2)-directed therapy are essential to inform treatment decisions. The TBCRC026 trial reported that early declines in tumor SUVs corrected for lean body mass (SULmax) on 18F-FDG PET/CT predicted a pathologic complete response (pCR) to HER2 therapy with neoadjuvant trastuzumab and pertuzumab (HP) without chemotherapy in estrogen receptor (ER)-negative, HER2-positive breast cancer. We hypothesized that 18F-FDG PET/CT SULmax parameters would predict recurrence-free survival (RFS) and overall survival (OS). Methods: Patients with stage II/III ER-negative, HER2-positive breast cancer received neoadjuvant HP (n = 88). pCR after HP alone was 22% (18/83), additional nonstudy neoadjuvant therapy was administered in 28% (25/88), and the majority received adjuvant therapy per physician discretion. 18F-FDG PET/CT was performed at baseline and at cycle 1, day 15 (C1D15). RFS and OS were summarized using the Kaplan-Meier method and compared between subgroups using logrank tests. Associations between 18F-FDG PET/CT (≥40% decline in SULmax between baseline and C1D15, or C1D15 SULmax ≤ 3) and pCR were evaluated using Cox regressions, where likelihood ratio CIs were reported because of the small numbers of events. Results: Median follow-up was 53.7 mo (83/88 evaluable), with 6 deaths and 14 RFS events. Estimated RFS and OS at 3 y was 84% (95% CI, 76%-92%) and 92% (95% CI, 87%-98%), respectively. A C1D15 SULmax of 3 or less was associated with improved RFS (hazard ratio [HR], 0.36; 95% CI, 0.11-1.05; P = 0.06) and OS (HR, 0.14; 95% CI, 0.01-0.85; P = 0.03), the latter statistically significant. The association of an SULmax decline of at least 40% (achieved in 59%) with RFS and OS did not reach statistical significance. pCR was associated with improved RFS (HR, 0.25; 95% CI, 0.01-1.24; P = 0.10) but did not reach statistical significance. Conclusion: For the first time, we report a potential association between a C1D15 SULmax of 3 or less on 18F-FDG PET/CT and RFS and OS outcomes in patients with ER-negative, HER2-positive breast cancer receiving neoadjuvant HP alone. If confirmed in future studies, this imaging-based biomarker may facilitate early individualization of therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Treatment Outcome , Receptor, ErbB-2/metabolism , Trastuzumab , Positron-Emission Tomography , Neoadjuvant Therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL