Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2303401, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38354063

ABSTRACT

Extracellular recordings with planar microelectrodes are the gold standard technique for recording the fast action potentials of neurons in the intact brain. The introduction of microfabrication techniques has revolutionized the in vivo recording of neuronal activity and introduced high-density, multi-electrode arrays that increase the spatial resolution of recordings and the number of neurons that can be simultaneously recorded. Despite these innovations, there is still debate about the ideal electrical transfer characteristics of extracellular electrodes. This uncertainty is partly due to the lack of systematic studies comparing electrodes with different characteristics, particularly for chronically implanted arrays over extended time periods. Here a high-density, flexible, and thin-film array is fabricated and tested, containing four distinct electrode types differing in surface material and surface topology and, thus, impedance. It is found that recording quality is strongly related to electrode impedance with signal amplitude and unit yield negatively correlated to impedance. Electrode impedances are stable for the duration of the experiment (up to 12 weeks) and recording quality does not deteriorate. The findings support the expectation from the theory that recording quality will increase as impedance decreases.

2.
Adv Sci (Weinh) ; 10(14): e2207576, 2023 05.
Article in English | MEDLINE | ID: mdl-36935361

ABSTRACT

Flexible implantable neurointerfaces show great promise in addressing one of the major challenges of implantable neurotechnology, namely the loss of signal connected to unfavorable probe tissue interaction. The authors here show how multilayer polyimide probes allow high-density intracortical recordings to be combined with a reliable long-term stable tissue interface, thereby progressing toward chronic stability of implantable neurotechnology. The probes could record 10-60 single units over 5 months with a consistent peak-to-peak voltage at dimensions that ensure robust handling and insulation longevity. Probes that remain in intimate contact with the signaling tissue over months to years are a game changer for neuroscience and, importantly, open up for broader clinical translation of systems relying on neurotechnology to interface the human brain.


Subject(s)
Brain , Humans , Electrodes, Implanted
3.
Int J Hyperthermia ; 32(6): 704-12, 2016 09.
Article in English | MEDLINE | ID: mdl-27269303

ABSTRACT

Temperatures above the normal physiological threshold may cause damage to cells and tissue. In this study, the response of a culture of dissociated cerebral cortex cells exposed to laser-induced temperature gradients was examined. The cellular response was evaluated using a fluorescent dye indicating metabolic activity. Furthermore, by using a finite element model of the heating during the pulsed laser application, threshold temperatures could be extracted for the cellular response at different laser pulse lengths. These threshold temperatures were used in an Arrhenius model to extract the kinetic parameters, i.e. the activation energy (Ea), and the frequency factor (Ac), for the system. A damage signal ratio was defined and calculated to 5% for the cells to increase their metabolism as a response to the heat. Furthermore, efficient stimulation with 20-ms long laser pulses did not evoke changes in metabolism. Thus, 20 ms could be a potential pulse length for functional stimulation of neural cells.


Subject(s)
Cerebral Cortex/pathology , Hyperthermia, Induced/adverse effects , Animals , Cell Survival , Cerebral Cortex/cytology , Finite Element Analysis , Lasers , Models, Theoretical , Rats , Temperature
4.
Ann Biomed Eng ; 42(4): 822-32, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24259007

ABSTRACT

The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.


Subject(s)
Astrocytes/radiation effects , Hot Temperature/adverse effects , Infrared Rays/adverse effects , Animals , Astrocytes/physiology , Cell Movement/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Lasers , Models, Biological , Rats
5.
Lasers Surg Med ; 45(7): 469-81, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23832680

ABSTRACT

BACKGROUND AND OBJECTIVE: Infrared neural stimulation (INS) has recently evoked interest as an alternative to electrical stimulation. The mechanism of activation is the heating of water, which induces changes in cell membrane potential but may also trigger heat sensitive receptors. To further elucidate the mechanism, which may be dependent on cell type, a detailed description of the temperature distribution is necessary. A good control of the resulting temperature during INS is also necessary to avoid excessive heating that may damage the cells. Here we present a detailed model for the heating during INS and apply it for INS of in vitro neural networks of rat cerebral cortex neurons. STUDY DESIGN/MATERIALS AND METHODS: A model of the heating during INS of a cell culture in a non-turbid media was prepared using multiphysics software. Experimental parameters such as initial temperature, beam distribution, pulse length, pulse duration, frequency and laser-cell distance were used. To verify the model, local temperature measurements using open pipette resistance were conducted. Furthermore, cortical neurons in culture were stimulated by a 500 mW pulsed diode laser (wavelength 1,550 nm) launched into a 200 µm multimodal optical fiber positioned 300 µm from the glass surface. The radiant exposure was 5.2 J/cm(2) . RESULTS: The model gave detailed information about the spatial and temporal temperature distribution in the heated volume during INS. Temperature measurements using open pipette resistance verified the model. The peak temperature experienced by the cells was 48°C. Cortical neurons were successfully stimulated using the 1,550 nm laser and single cell activation as well as neural network inhibition were observed. CONCLUSION: The model shows the spatial and temporal temperature distribution in the heated volume and could serve as a useful tool for future studies of the heating during INS.


Subject(s)
Body Temperature/radiation effects , Cerebral Cortex/radiation effects , Infrared Rays , Neurons/radiation effects , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Electrophysiology , Lasers, Semiconductor , Neurons/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...