Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Ecology ; 93(5): 981-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22764485

ABSTRACT

Ecological specialization is a fundamental and well-studied concept, yet its great reach and complexity limit current understanding in important ways. More than 20 years after the publication of D. J. Futuyma and G. Moreno's oft-cited, major review of the topic, we synthesize new developments in the evolution of ecological specialization. Using insect-plant interactions as a model, we focus on important developments in four critical areas: genetic architecture, behavior, interaction complexity, and macroevolution. We find that theory based on simple genetic trade-offs in host use is being replaced by more subtle and complex pictures of genetic architecture, and multitrophic interactions have risen as a necessary framework for understanding specialization. A wealth of phylogenetic data has made possible a more detailed consideration of the macroevolutionary dimension of specialization, revealing (among other things) bidirectionality in transitions between generalist and specialist lineages. Technological advances, including genomic sequencing and analytical techniques at the community level, raise the possibility that the next decade will see research on specialization spanning multiple levels of biological organization in non-model organisms, from genes to populations to networks of interactions in natural communities. Finally, we offer a set of research questions that we find to be particularly pressing and fruitful for future research on ecological specialization.


Subject(s)
Biological Evolution , Ecosystem , Insecta/genetics , Insecta/physiology , Plants/genetics , Adaptation, Physiological/genetics , Animals , Behavior, Animal , Genetic Variation , Herbivory , Oviposition
2.
Nature ; 448(7154): 696-9, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17687325

ABSTRACT

For numerous taxa, species richness is much higher in tropical than in temperate zone habitats. A major challenge in community ecology and evolutionary biogeography is to reveal the mechanisms underlying these differences. For herbivorous insects, one such mechanism leading to an increased number of species in a given locale could be increased ecological specialization, resulting in a greater proportion of insect species occupying narrow niches within a community. We tested this hypothesis by comparing host specialization in larval Lepidoptera (moths and butterflies) at eight different New World forest sites ranging in latitude from 15 degrees S to 55 degrees N. Here we show that larval diets of tropical Lepidoptera are more specialized than those of their temperate forest counterparts: tropical species on average feed on fewer plant species, genera and families than do temperate caterpillars. This result holds true whether calculated per lepidopteran family or for a caterpillar assemblage as a whole. As a result, there is greater turnover in caterpillar species composition (greater beta diversity) between tree species in tropical faunas than in temperate faunas. We suggest that greater specialization in tropical faunas is the result of differences in trophic interactions; for example, there are more distinct plant secondary chemical profiles from one tree species to the next in tropical forests than in temperate forests as well as more diverse and chronic pressures from natural enemy communities.


Subject(s)
Diet , Ecosystem , Lepidoptera/physiology , Trees , Tropical Climate , Animals , Biodiversity , Larva/physiology , Species Specificity
3.
Proc Natl Acad Sci U S A ; 102(48): 17384-7, 2005 Nov 29.
Article in English | MEDLINE | ID: mdl-16293686

ABSTRACT

Insect outbreaks are expected to increase in frequency and intensity with projected changes in global climate through direct effects of climate change on insect populations and through disruption of community interactions. Although there is much concern about mean changes in global climate, the impact of climatic variability itself on species interactions has been little explored. Here, we compare caterpillar-parasitoid interactions across a broad gradient of climatic variability and find that the combined data in 15 geographically dispersed databases show a decrease in levels of parasitism as climatic variability increases. The dominant contribution to this pattern by relatively specialized parasitoid wasps suggests that climatic variability impairs the ability of parasitoids to track host populations. Given the important role of parasitoids in regulating insect herbivore populations in natural and managed systems, we predict an increase in the frequency and intensity of herbivore outbreaks through a disruption of enemy-herbivore dynamics as climates become more variable.


Subject(s)
Greenhouse Effect , Lepidoptera/parasitology , Wasps/physiology , Animals , Geography , Host-Parasite Interactions , Larva/parasitology , Larva/physiology , Lepidoptera/physiology , Population Dynamics , Regression Analysis
4.
Nature ; 417(6885): 170-3, 2002 May 09.
Article in English | MEDLINE | ID: mdl-12000959

ABSTRACT

Patterns of association between herbivores and host plants have been thought to reflect the quality of plants as food resources as influenced by plant nutrient composition, defences, and phenology. Host-plant-specific enemies, that is, the third trophic level, might also influence the distribution of herbivores across plant species. However, studies of the evolution of herbivore host range have generally not examined the third trophic level, leaving unclear the importance of this factor in the evolution of plant-insect herbivore interactions. Analysis of parasitoid rearings by the Canadian Forest Insect Survey shows that parasitism of particular Lepidoptera species is strongly host-plant-dependent, that the pattern of host-plant dependence varies among species of caterpillars, and that some parasitoid species are themselves specialized with respect to tree species. Host-plant-dependent parasitism suggests the possibility of top-down influence on host plant use. Differences in parasitism among particular caterpillar-host plant combinations could select for specialization of host plant ranges within caterpillar communities. Such specialization would ultimately promote the species diversification of Lepidoptera in temperate forests with respect to escape from enemies.


Subject(s)
Butterflies/physiology , Larva/physiology , Moths/physiology , Plants/parasitology , Trees/parasitology , Animals , Butterflies/classification , Butterflies/growth & development , Chi-Square Distribution , Databases as Topic , Host-Parasite Interactions , Larva/classification , Moths/classification , Moths/growth & development , Plants/classification , Trees/classification
5.
Evolution ; 55(11): 2236-47, 2001 Nov 11.
Article in English | MEDLINE | ID: mdl-11794783

ABSTRACT

The timing of life-history events in insects can have important consequences for both survival and reproduction. For insect herbivores with complex life histories, selection is predicted to favor those combinations of traits that increase the size at metamorphosis while minimizing the risk of mortality from natural enemies. Studies quantifying selection on life-history traits in natural insect herbivore populations, however, have been rare. The purpose of this study was to measure phenotypic selection imposed by elements of the first and third trophic levels on variation in two life-history traits, the timing of egg hatch and pupal mass, in a population of oak-feeding caterpillars, Psilocorsis quercicella (Lepidoptera: Oecophoridae). Larvae were collected from the field throughout each of two generations per year for three years and reared to determine the effects of the date of egg hatch on both the risk of attack from parasitoids and the pupal mass of the survivors. The direction and strength of phenotypic selection attributed to aspects of the first and third trophic levels, as well as their combined effects, on the date of egg hatch was measured for each of the six generations. Heritabilities of and genetic correlations between pupal mass and the date of adult emergence from diapause (the life-history trait expected to have the largest influence on the timing of egg hatch, and thus larval development) were estimated from laboratory matings. In four of the six generations examined, significant directional selection attributed to the first trophic level was detected, always favoring early-hatching cohorts predicted to experience higher leaf quality than late-hatching cohorts. Directional phenotypic selection by the third trophic level was detected in only one of three years, and in that year the direction of selection was in opposite directions during the two successive generations. The combined effect of selection by both trophic levels indicated that the third trophic level acted to either reduce or enhance the more predictable pattern of selection attributed to the first trophic level. In addition, I found evidence of truncation selection acting to increase the mean and decrease the variance of pupal mass during the pupa-adult transition in the laboratory. Pupal mass and diapause duration were found to vary significantly among full-sibling families; upper bounds for heritability estimates were 0.57 and 0.30, respectively. Furthermore, these two traits were found to be positively genetically correlated (families with larger pupae had longer diapause durations), resulting in a fitness trade-off, because larger pupae enjoy higher survival through metamorphosis and female fecundity but emerge later, when average leaf quality for offspring is generally poorer.


Subject(s)
Life Cycle Stages , Moths/physiology , Selection, Genetic , Animals , Female , Larva/growth & development , Larva/physiology , Metamorphosis, Biological , Moths/genetics , Moths/growth & development , Phenotype , Pupa/growth & development , Pupa/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL