Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 281(3): 539-51, 1998 Aug 21.
Article in English | MEDLINE | ID: mdl-9698568

ABSTRACT

The dynamic properties of ribosomal protein L9 from Bacillus stearothermophilus were investigated in solution using an analysis of nitrogen-15 longitudinal and transverse relaxation rates and amide nitrogen-proton nuclear Overhauser effects. The relaxation rates of the amide nitrogen nuclei were found to be correlated with the angle between the amide nitrogen-proton bond vectors and the long axis of the protein. This directional dependence of the nuclear relaxation rates is consistent with the protein having a highly elongated shape in solution, consistent with that observed in previous X-ray crystallographic studies of the crystalline form. Analysis of the nuclear relaxation data shows that the solvent-exposed nine-turn alpha helix connecting the two domains has a relatively high degree of order, in contrast to the connecting helix in the similarly shaped, but functionally different, calmodulin protein. The rotational correlation times associated with the amide nitrogen atoms of the N-terminal domain are on average slightly shorter than those of the C-terminal domain and connecting helix, providing evidence that the N-terminal domain exhibits some degree of independence in tumbling, in addition to other fast internal motions. The putative RNA-binding surfaces in each of the protein domains are characterized by relatively low order parameters, indicating that these are the most flexible regions of the molecule. Overall, the picture of the internal dynamics provided by nuclear relaxation measurements is similar to that obtained from a detailed study of amide proton exchange rates, but differs markedly from the picture provided by crystallographic temperature factors. The present study describes a molecule with unusual and complex dynamic properties, and supports a model where the protein functions as a "molecular strut" within the ribosome.


Subject(s)
Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Ribosomal Proteins/chemistry , Amino Acid Sequence , Anisotropy , Binding Sites , Geobacillus stearothermophilus/chemistry , Molecular Sequence Data , RNA
2.
J Mol Biol ; 268(2): 482-93, 1997 May 02.
Article in English | MEDLINE | ID: mdl-9159485

ABSTRACT

Nuclear magnetic resonance and circular dichroism experiments were used to investigate the stability and dynamic aspects of ribosomal protein L9 from Bacillus stearothermophilus in solution. This unusually shaped protein, with its two widely spaced RNA-binding domains linked by a connecting helix, has been hypothesized to serve as a "molecular strut", most likely playing a role in ribosome assembly and/or maintaining the catalytically active conformation of ribosomal RNA. Protection factors for amide proton exchange were quantitatively measured in an extensive series of NMR experiments, providing probes of the stability and dynamics of localized regions of the protein. Results show that each of the two RNA-binding domains contains a highly stable core. The exposed central helix that connects the two domains is helical in solution, albeit not rigid, a result that is supported by amide proton protection factors, circular dichroism measurements, and carbon-13 and proton chemical shift index values. A conserved glycine and lysine-rich loop in the N-terminal domain is ordered and quite stable, a surprising result, since this loop had been presumed to be disordered in the original crystallographic analysis. Interestingly, the most dynamic parts of the protein are the regions that contain the likely RNA-binding residues in each of the two domains. The present results add further support to the notion that the L9 protein plays an architectural role within the ribosome, with the central helix serving as a molecular strut, or perhaps a spring, linking the two widely spaced RNA-binding domains.


Subject(s)
RNA, Ribosomal, 23S/chemistry , Ribosomal Proteins/chemistry , Ribosomes/ultrastructure , Amides , Amino Acid Sequence , Circular Dichroism , Geobacillus stearothermophilus/chemistry , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Protein Structure, Secondary , Protons , Recombinant Proteins , Ribonucleoproteins/chemistry , Ribosomal Proteins/ultrastructure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...