Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 111: 102166, 2022 01.
Article in English | MEDLINE | ID: mdl-35016770

ABSTRACT

Harmful algal blooms (HABs) can have severe ecological, societal and economic impacts upon marine ecosystems, human health and the seafood industry. We evaluated changes in marine plankton communities with prevailing physico-chemical conditions throughout an exceptionally warm summer (2018), to elucidate key factors governing HABs and their impacts on shellfish mariculture in the western English Channel. Despite warm, stable weather conditions and widespread seasonal stratification throughout the summer, divergent plankton community compositions were observed at two rope-grown mussel (Mytilus edulis) farms (St Austell Bay and Lyme Bay) and a long-term ecological research LTER site (Plymouth L4). There were significant differences between sites in the abundances of HAB species, including Dinophysis spp. and Karenia mikimotoi, whose cell counts bloomed in excess of UK Food Standards Agency (FSA) advisory 'trigger' levels at Plymouth L4 and St Austell Bay, but not at the Lyme Bay site. The K. mikimotoi bloom occurred over two weeks in August and comprised up to 88% of the standing phytoplankton biomass in St Austell Bay. Dinophysis spp. also bloomed here from May to September, constituting up to 28% of phytoplankton biomass. This protracted bloom resulted in concentrations of Dinophysis toxins 1 & 2 and pectenotoxins and okadaic acid in shellfish, which closed shellfish harvesting operations on farms located in St Austell Bay, and other shellfish sites in the west of the western English Channel (but not in the east of the region). Inter-site differences in the abundances of these and other HAB species were associated with variations in water circulation and co-occurring phytoplankton and zooplankton communities. Furthermore, plankton monitoring data obtained from the L4 site over the past 3 decades showed HAB species (including Dinophysis spp.) with abundances commonly occurring above advisory trigger levels during warmer periods, such as that coinciding with our study. Under projected climate warming these blooms are likely to continue to be governed by regionally distinct patterns of water circulation, which need to be taken into account in marine spatial planning, when assessing the suitability of new shellfish mariculture sites.


Subject(s)
Ecosystem , Harmful Algal Bloom , Seafood , Shellfish/analysis , Water
2.
Ecology ; 101(7): e03027, 2020 07.
Article in English | MEDLINE | ID: mdl-32096220

ABSTRACT

Sex-biased survival linked to anthropogenic threats places populations at risk. We show the utility of long-term multidecadal photo-identification (photo-id) combined with long-term high-resolution (Fastloc-GPS) satellite telemetry to investigate the links between mortality rates and patterns of movement for a wide-ranging, endangered marine vertebrate. Using a photo-identification database of 947 loggerhead turtles (Caretta caretta) compiled over 18 yr, we estimated greater annual survival rates of females (0.89; 95% confidence interval [CI] 0.87-0.90) compared to males (0.73; 95% CI 0.67-0.78). For males satellite-tracked across multiple breeding seasons, 100% (26 of 26) returned to the same breeding site, suggesting the calculated lower male survival rate was likely not due to emigration to breed elsewhere. 10,111 and 2,524 tracking days for males (n = 39 individuals) and females (n = 18 individuals), respectively, revealed different habitat-use patterns outside the breeding season: males tended to occupy foraging sites closer to shore and closer to breeding sites but, due to their generally annual breeding, compared to biennial breeding for females, males migrated further per year on average. These differences in movement patterns likely contribute to higher mortality in males through increased interaction with anthropogenic threats. Long-term identification coupled with tracking offers great promise for estimating the survival rates of other wide-ranging species.


Subject(s)
Endangered Species , Turtles , Animal Migration , Animals , Ecosystem , Female , Male , Seasons , Telemetry
3.
Sci Rep ; 5: 11387, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26096459

ABSTRACT

The economic and societal impacts of nano-materials are enormous. However, releasing such materials in the environment could be detrimental to human health and the ecological biosphere. Here we demonstrate that gold and quantum dots nanoparticles bio-accumulate into mucus materials coming from natural species such as jellyfish. One strategy that emerges from this finding would be to take advantage of these trapping properties to remove nanoparticles from contaminated water.


Subject(s)
Decontamination/methods , Metal Nanoparticles , Mucus/metabolism , Quantum Dots , Water Purification/methods , Animals , Ecosystem , Gold , Humans , Medical Waste Disposal , Scyphozoa/metabolism , Sewage/chemistry , Water Pollutants, Chemical
4.
Evodevo ; 6: 11, 2015.
Article in English | MEDLINE | ID: mdl-25932322

ABSTRACT

BACKGROUND: Simple life cycles arise from complex life cycles when one or more developmental stages are lost. This raises a fundamental question - how can an intermediate stage, such as a larva, be removed, and development still produce a normal adult? To address this question, we examined the development in several species of pelagiid jellyfish. Most members of Pelagiidae have a complex life cycle with a sessile polyp that gives rise to ephyrae (juvenile medusae); but one species within Pelagiidae, Pelagia noctiluca, spends its whole life in the water column, developing from a larva directly into an ephyra. In many complex life cycles, adult features develop from cell populations that remain quiescent in larvae, and this is known as life cycle compartmentalization and may facilitate the evolution of direct life cycles. A second type of metamorphic processes, known as remodeling, occurs when adult features are formed through modification of already differentiated larval structures. We examined muscle morphology to determine which of these alternatives may be present in Pelagiidae. RESULTS: We first examined the structure and development of polyp and ephyra musculature in Chrysaora quinquecirrha, a close relative of P. noctiluca with a complex life cycle. Using phallotoxin staining and confocal microscopy, we verified that polyps have four to six cord muscles that persist in strobilae and discovered that cord muscles is physically separated from ephyra muscle. When cord muscle is removed from ephyra segments, normal ephyra muscle still develops. This suggests that polyp cord muscle is not necessary for ephyra muscle formation. We also found no evidence of polyp-like muscle in P. noctiluca. In both species, we discovered that ephyra muscle arises de novo in a similar manner, regardless of the life cycle. CONCLUSIONS: The separate origins of polyp and ephyra muscle in C. quinquecirrha and the absence of polyp-like muscle in P. noctiluca suggest that polyp muscle is not remodeled to form ephyra muscle in Pelagiidae. Life cycle stages in Scyphozoa may instead be compartmentalized. Because polyp muscle is not directly remodeled, this may have facilitated the loss of the polyp stage in the evolution of P. noctiluca.

5.
Proc Biol Sci ; 279(1728): 465-73, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-21752825

ABSTRACT

Over-fishing may lead to a decrease in fish abundance and a proliferation of jellyfish. Active movements and prey search might be thought to provide a competitive advantage for fish, but here we use data-loggers to show that the frequently occurring coastal jellyfish (Rhizostoma octopus) does not simply passively drift to encounter prey. Jellyfish (327 days of data from 25 jellyfish with depth collected every 1 min) showed very dynamic vertical movements, with their integrated vertical movement averaging 619.2 m d(-1), more than 60 times the water depth where they were tagged. The majority of movement patterns were best approximated by exponential models describing normal random walks. However, jellyfish also showed switching behaviour from exponential patterns to patterns best fitted by a truncated Lévy distribution with exponents (mean µ=1.96, range 1.2-2.9) close to the theoretical optimum for searching for sparse prey (µopt≈2.0). Complex movements in these 'simple' animals may help jellyfish to compete effectively with fish for plankton prey, which may enhance their ability to increase in dominance in perturbed ocean systems.


Subject(s)
Predatory Behavior , Scyphozoa/physiology , Animals , Ecosystem , Gastrointestinal Contents , Models, Biological , Motor Activity , Movement , Seasons , Telemetry , Wales
SELECTION OF CITATIONS
SEARCH DETAIL
...