Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 284(49): 33750-62, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19815551

ABSTRACT

Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cgamma2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kalpha or -beta strongly and selectively suppressed GPVI-induced Ca(2+) mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cgamma2 by PI3Kalpha/beta. That PI3Kalpha and -beta have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca(2+) increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kalpha/beta was blocked or p85alpha was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kdelta or -gamma. Furthermore, PI3Kalpha/beta, but not PI3Kgamma, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kalpha and -beta isoforms are required for full GPVI-dependent platelet Ca(2+) signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kalpha an interesting new target for anti-platelet therapy.


Subject(s)
Blood Platelets/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Platelet Membrane Glycoproteins/metabolism , Thrombosis/pathology , Animals , Calcium/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/genetics , Platelet Activation , Platelet Aggregation , Protein Isoforms , Signal Transduction , Thrombosis/metabolism
2.
J Biol Chem ; 284(49): 33763-72, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19700402

ABSTRACT

Glycoprotein (GP) VI is a critical platelet collagen receptor. Phosphoinositide 3-kinase (PI3K) plays an important role in GPVI-mediated platelet activation, yet the major PI3K isoforms involved in this process have not been identified. In addition, stimulation of GPVI results in the activation of Akt, a downstream effector of PI3K. Thus, we investigated the contribution of PI3K isoforms to GPVI-mediated platelet activation and Akt activation. A protein kinase C inhibitor GF 109203X or a P2Y(12) receptor antagonist AR-C69931MX partly reduced GPVI-induced Akt phosphorylation. Platelets from mice dosed with clopidogrel also showed partial Akt phosphorylation, indicating that GPVI-mediated Akt phosphorylation is regulated by both secretion-dependent and -independent pathways. In addition, GPVI-induced Akt phosphorylation in the presence of ADP antagonists was completely inhibited by PI3K inhibitor LY294002 and PI3Kbeta inhibitor TGX-221 indicating an essential role of PI3Kbeta in Akt activation directly downstream of GPVI. Moreover, GPVI-mediated platelet aggregation, secretion, and intracellular Ca(2+) mobilization were significantly inhibited by TGX-221, and less strongly inhibited by PI3Kalpha inhibitor PIK75, but were not affected by PI3Kgamma inhibitor AS252424 and PI3Kdelta inhibitor IC87114. Consistently, GPVI-induced integrin alpha(IIb)beta(3) activation of PI3Kgamma(-/-) and PI3Kdelta(-/-) platelets also showed no significant difference compared with wild-type platelets. These results demonstrate that GPVI-induced Akt activation in platelets is dependent in part on G(i) stimulation through P2Y(12) receptor activation by secreted ADP. In addition, a significant portion of GPVI-dependent, ADP-independent Akt activation also exists, and PI3Kbeta plays an essential role in GPVI-mediated platelet aggregation and Akt activation.


Subject(s)
Blood Platelets/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/physiology , Platelet Membrane Glycoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Dose-Response Relationship, Drug , Enzyme Activation , Enzyme Inhibitors/pharmacology , Flow Cytometry/methods , Humans , Mice , Mice, Transgenic , Models, Biological , Phosphorylation , Platelet Aggregation
SELECTION OF CITATIONS
SEARCH DETAIL
...