Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 802: 149798, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34454142

ABSTRACT

Rapid changes in microbial water quality in surface waters pose challenges for production of safe drinking water. If not treated to an acceptable level, microbial pathogens present in the drinking water can result in severe consequences for public health. The aim of this paper was to evaluate the suitability of data-driven models of different complexity for predicting the concentrations of E. coli in the river Göta älv at the water intake of the drinking water treatment plant in Gothenburg, Sweden. The objectives were to (i) assess how the complexity of the model affects the model performance; and (ii) identify relevant factors and assess their effect as predictors of E. coli levels. To forecast E. coli levels one day ahead, the data on laboratory measurements of E. coli and total coliforms, Colifast measurements of E. coli, water temperature, turbidity, precipitation, and water flow were used. The baseline approaches included Exponential Smoothing and ARIMA (Autoregressive Integrated Moving Average), which are commonly used univariate methods, and a naive baseline that used the previous observed value as its next prediction. Also, models common in the machine learning domain were included: LASSO (Least Absolute Shrinkage and Selection Operator) Regression and Random Forest, and a tool for optimising machine learning pipelines - TPOT (Tree-based Pipeline Optimization Tool). Also, a multivariate autoregressive model VAR (Vector Autoregression) was included. The models that included multiple predictors performed better than univariate models. Random Forest and TPOT resulted in higher performance but showed a tendency of overfitting. Water temperature, microbial concentrations upstream and at the water intake, and precipitation upstream were shown to be important predictors. Data-driven modelling enables water producers to interpret the measurements in the context of what concentrations can be expected based on the recent historic data, and thus identify unexplained deviations warranting further investigation of their origin.


Subject(s)
Drinking Water , Water Quality , Environmental Monitoring , Escherichia coli , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...