Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 98, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311708

ABSTRACT

Innovations in nanostructuring of inorganic crystalline solids are often limited by prerequisite critical nucleation energy and solute supersaturation for formation of a phase. This research provides direct evidence supporting the viability of an unconventional irradiation-induced nanostructuring process, via transmission electron microscopy, that circumvents these preconditions. Using polymorphic silicon carbide (SiC) as a prototype, a surprising two-step nucleation route is demonstrated through which nanoscale distribution of the second phase is achieved by reaction of solutes with neutron irradiation-induced precursors. In the first step, nanoscale α-SiC precipitates in a ß-SiC matrix unexpectedly nucleate heterogeneously at structural defects. This occurs at significantly lower temperatures compared with the usual ß→α transition temperature. Subsequently, α-SiC precipitate acts as a surrogate template for its structural and compositional transition into a fission product precipitate, palladium silicide. These discoveries provide a modern view of irradiation engineering in polymorphic ceramics for advanced applications.

2.
Article in English | MEDLINE | ID: mdl-18467221

ABSTRACT

Noncontacting, laser-based resonant ultrasound spectroscopy (RUS) was applied to characterize the microstructure of a polycrystalline sample of high purity copper. The frequencies and shapes of 40 of the first 50 resonant vibrational modes were determined. The sample's elastic constants, used for theoretical prediction, were estimated using electron backscatter diffraction data to form a polycrystalline average. The difference in mode frequency between theory and experiment averages 0.7% per mode. The close agreement demonstrates that, using standard metallurgical imaging as a guide, laser-based RUS is a promising approach to characterizing material microstructure. In addition to peak location, the Q of the resonant peaks was also examined. The average Q of the lasergenerated and laser-detected resonant ultrasound spectrum was 30% higher than a spectrum produced employing a piezoelectric transducer pair for excitation and detection.


Subject(s)
Lasers , Materials Testing/instrumentation , Refractometry/instrumentation , Spectrum Analysis/instrumentation , Ultrasonography/instrumentation , Equipment Design , Equipment Failure Analysis , Materials Testing/methods , Refractometry/methods , Sensitivity and Specificity , Spectrum Analysis/methods , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...