Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Estee Y Cramer; Evan L Ray; Velma K Lopez; Johannes Bracher; Andrea Brennen; Alvaro J Castro Rivadeneira; Aaron Gerding; Tilmann Gneiting; Katie H House; Yuxin Huang; Dasuni Jayawardena; Abdul H Kanji; Ayush Khandelwal; Khoa Le; Anja Muehlemann; Jarad Niemi; Apurv Shah; Ariane Stark; Yijin Wang; Nutcha Wattanachit; Martha W Zorn; Youyang Gu; Sansiddh Jain; Nayana Bannur; Ayush Deva; Mihir Kulkarni; Srujana Merugu; Alpan Raval; Siddhant Shingi; Avtansh Tiwari; Jerome White; Neil F Abernethy; Spencer Woody; Maytal Dahan; Spencer Fox; Kelly Gaither; Michael Lachmann; Lauren Ancel Meyers; James G Scott; Mauricio Tec; Ajitesh Srivastava; Glover E George; Jeffrey C Cegan; Ian D Dettwiller; William P England; Matthew W Farthing; Robert H Hunter; Brandon Lafferty; Igor Linkov; Michael L Mayo; Matthew D Parno; Michael A Rowland; Benjamin D Trump; Yanli Zhang-James; Samuel Chen; Stephen V Faraone; Jonathan Hess; Christopher P Morley; Asif Salekin; Dongliang Wang; Sabrina M Corsetti; Thomas M Baer; Marisa C Eisenberg; Karl Falb; Yitao Huang; Emily T Martin; Ella McCauley; Robert L Myers; Tom Schwarz; Daniel Sheldon; Graham Casey Gibson; Rose Yu; Liyao Gao; Yian Ma; Dongxia Wu; Xifeng Yan; Xiaoyong Jin; Yu-Xiang Wang; YangQuan Chen; Lihong Guo; Yanting Zhao; Quanquan Gu; Jinghui Chen; Lingxiao Wang; Pan Xu; Weitong Zhang; Difan Zou; Hannah Biegel; Joceline Lega; Steve McConnell; VP Nagraj; Stephanie L Guertin; Christopher Hulme-Lowe; Stephen D Turner; Yunfeng Shi; Xuegang Ban; Robert Walraven; Qi-Jun Hong; Stanley Kong; Axel van de Walle; James A Turtle; Michal Ben-Nun; Steven Riley; Pete Riley; Ugur Koyluoglu; David DesRoches; Pedro Forli; Bruce Hamory; Christina Kyriakides; Helen Leis; John Milliken; Michael Moloney; James Morgan; Ninad Nirgudkar; Gokce Ozcan; Noah Piwonka; Matt Ravi; Chris Schrader; Elizabeth Shakhnovich; Daniel Siegel; Ryan Spatz; Chris Stiefeling; Barrie Wilkinson; Alexander Wong; Sean Cavany; Guido Espana; Sean Moore; Rachel Oidtman; Alex Perkins; David Kraus; Andrea Kraus; Zhifeng Gao; Jiang Bian; Wei Cao; Juan Lavista Ferres; Chaozhuo Li; Tie-Yan Liu; Xing Xie; Shun Zhang; Shun Zheng; Alessandro Vespignani; Matteo Chinazzi; Jessica T Davis; Kunpeng Mu; Ana Pastore y Piontti; Xinyue Xiong; Andrew Zheng; Jackie Baek; Vivek Farias; Andreea Georgescu; Retsef Levi; Deeksha Sinha; Joshua Wilde; Georgia Perakis; Mohammed Amine Bennouna; David Nze-Ndong; Divya Singhvi; Ioannis Spantidakis; Leann Thayaparan; Asterios Tsiourvas; Arnab Sarker; Ali Jadbabaie; Devavrat Shah; Nicolas Della Penna; Leo A Celi; Saketh Sundar; Russ Wolfinger; Dave Osthus; Lauren Castro; Geoffrey Fairchild; Isaac Michaud; Dean Karlen; Matt Kinsey; Luke C. Mullany; Kaitlin Rainwater-Lovett; Lauren Shin; Katharine Tallaksen; Shelby Wilson; Elizabeth C Lee; Juan Dent; Kyra H Grantz; Alison L Hill; Joshua Kaminsky; Kathryn Kaminsky; Lindsay T Keegan; Stephen A Lauer; Joseph C Lemaitre; Justin Lessler; Hannah R Meredith; Javier Perez-Saez; Sam Shah; Claire P Smith; Shaun A Truelove; Josh Wills; Maximilian Marshall; Lauren Gardner; Kristen Nixon; John C. Burant; Lily Wang; Lei Gao; Zhiling Gu; Myungjin Kim; Xinyi Li; Guannan Wang; Yueying Wang; Shan Yu; Robert C Reiner; Ryan Barber; Emmanuela Gaikedu; Simon Hay; Steve Lim; Chris Murray; David Pigott; Heidi L Gurung; Prasith Baccam; Steven A Stage; Bradley T Suchoski; B. Aditya Prakash; Bijaya Adhikari; Jiaming Cui; Alexander Rodriguez; Anika Tabassum; Jiajia Xie; Pinar Keskinocak; John Asplund; Arden Baxter; Buse Eylul Oruc; Nicoleta Serban; Sercan O Arik; Mike Dusenberry; Arkady Epshteyn; Elli Kanal; Long T Le; Chun-Liang Li; Tomas Pfister; Dario Sava; Rajarishi Sinha; Thomas Tsai; Nate Yoder; Jinsung Yoon; Leyou Zhang; Sam Abbott; Nikos I Bosse; Sebastian Funk; Joel Hellewell; Sophie R Meakin; Katharine Sherratt; Mingyuan Zhou; Rahi Kalantari; Teresa K Yamana; Sen Pei; Jeffrey Shaman; Michael L Li; Dimitris Bertsimas; Omar Skali Lami; Saksham Soni; Hamza Tazi Bouardi; Turgay Ayer; Madeline Adee; Jagpreet Chhatwal; Ozden O Dalgic; Mary A Ladd; Benjamin P Linas; Peter Mueller; Jade Xiao; Yuanjia Wang; Qinxia Wang; Shanghong Xie; Donglin Zeng; Alden Green; Jacob Bien; Logan Brooks; Addison J Hu; Maria Jahja; Daniel McDonald; Balasubramanian Narasimhan; Collin Politsch; Samyak Rajanala; Aaron Rumack; Noah Simon; Ryan J Tibshirani; Rob Tibshirani; Valerie Ventura; Larry Wasserman; Eamon B O'Dea; John M Drake; Robert Pagano; Quoc T Tran; Lam Si Tung Ho; Huong Huynh; Jo W Walker; Rachel B Slayton; Michael A Johansson; Matthew Biggerstaff; Nicholas G Reich.
Preprint in English | medRxiv | ID: ppmedrxiv-21250974

ABSTRACT

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multi-model ensemble forecast that combined predictions from dozens of different research groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naive baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-week horizon 3-5 times larger than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. Significance StatementThis paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the US. Results show high variation in accuracy between and within stand-alone models, and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public health action.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20177493

ABSTRACT

BackgroundThe COVID-19 pandemic has driven demand for forecasts to guide policy and planning. Previous research has suggested that combining forecasts from multiple models into a single "ensemble" forecast can increase the robustness of forecasts. Here we evaluate the real-time application of an open, collaborative ensemble to forecast deaths attributable to COVID-19 in the U.S. MethodsBeginning on April 13, 2020, we collected and combined one- to four-week ahead forecasts of cumulative deaths for U.S. jurisdictions in standardized, probabilistic formats to generate real-time, publicly available ensemble forecasts. We evaluated the point prediction accuracy and calibration of these forecasts compared to reported deaths. ResultsAnalysis of 2,512 ensemble forecasts made April 27 to July 20 with outcomes observed in the weeks ending May 23 through July 25, 2020 revealed precise short-term forecasts, with accuracy deteriorating at longer prediction horizons of up to four weeks. At all prediction horizons, the prediction intervals were well calibrated with 92-96% of observations falling within the rounded 95% prediction intervals. ConclusionsThis analysis demonstrates that real-time, publicly available ensemble forecasts issued in April-July 2020 provided robust short-term predictions of reported COVID-19 deaths in the United States. With the ongoing need for forecasts of impacts and resource needs for the COVID-19 response, the results underscore the importance of combining multiple probabilistic models and assessing forecast skill at different prediction horizons. Careful development, assessment, and communication of ensemble forecasts can provide reliable insight to public health decision makers.

3.
Stud Health Technol Inform ; 250: 213-216, 2018.
Article in English | MEDLINE | ID: mdl-29857438

ABSTRACT

OBJECTIVE: To analyze the process of a nursing clinical skills assessment in a hospital in China, design the scoring system of the nursing clinical skills(SSNCK), and discuss its clinical application effects. METHODS: To analyze the flow of the current practical skills assessment with an operation process analysis chart to identify potential improvement priorities. This was accomplished by developing the SSNCK with Microsoft Visual Basic. A total of 100 nurses were selected. They were randomly divided into an experimental group and a control group. The experimental group completed the SSNCK, while the other completed a paper-based assessment. The differences between the two groups in terms of testing time and costs were compared. RESULTS: The SSNCK simplified the process of nursing clinical skills assessment and efficiently allocated human, material, and financial resources. The time required to complete the SSNCK was less than that for the paper-based assessment (t=12.99, P<0.01), and the overall cost was lower than that for the other assessment (t=13.56, P<0.01). CONCLUSION: The application of the SSNCK improves the efficiency of a nursing practical assessment. It also reduces testing costs and further develops hospital nursing education.


Subject(s)
Clinical Competence , Nursing Assessment , Nursing Staff , China , Humans
4.
J Clin Pharm Ther ; 43(2): 256-264, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29119581

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Patients with rheumatic disease are at risk for infections. Evaluating antitumour necrosis factor (anti-TNF) drug-associated risk of infections requires justification of baseline risk in the population at high risk of infection. We examined the incidence of active tuberculosis (TB) and its risk factors in patients with rheumatic disease started with anti-TNF-α therapy or with existing disease-modifying antirheumatic drug (DMARD) therapy. METHODS: A retrospective cohort study of anti-TNF-α therapy new users (anti-TNF-α group) and those starting with a DMARD after the failure of at least one other DMARD or who had added to existing DMARD treatment (DMARD group) for rheumatic disease in the largest medical setting in Taiwan from 1 January 2005 through 31 November 2013 was conducted to determine relative risk of TB between patient groups. Patients in the DMARD group were stratified into "mild" and "severe" disease severity as proxies for low and high background risk of infection. RESULTS AND DISCUSSION: A total of 3640 patients were enrolled (anti-TNF: 955; DMARD: 2685). The incidence of TB was 903.9/100 000 patient-years for anti-TNF-α new users and 391.7/100 000 patient-years for DMARD switchers. In Cox regression model, adjusted HR for TB in the anti-TNF-α group was higher than for the entire DMARD group (aHR, 2.41; 95% confidence interval [CI], 1.2-4.85), subgroup with mild disease (2.91; 1.31-6.47) and subgroup with severe disease (1.65; 0.68-4.03). Significant independent risk factors for TB were being male, age ≥60 years, history of respiratory disease, glucocorticoids dose >7.5 mg/d and living in a TB-prevalent region. WHAT IS NEW AND CONCLUSION: Anti-TNF-α therapy was independently associated with increased risk of TB in patients with mild disease, but it was not significantly correlated in patients with severe disease after adjusting for confounders.


Subject(s)
Antirheumatic Agents/adverse effects , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Tuberculosis/etiology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Adult , Aged , Female , Humans , Incidence , Male , Middle Aged , Retrospective Studies , Rheumatic Diseases/drug therapy , Rheumatic Diseases/metabolism , Risk Factors , Taiwan , Tuberculosis/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...