Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 21(1): 92, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750873

ABSTRACT

BACKGROUND: The popular statistics-based Genome-wide association studies (GWAS) have provided deep insights into the field of complex disorder genetics. However, its clinical applicability to predict disease/trait outcomes remains unclear as statistical models are not designed to make predictions. This study employs statistics-free machine-learning (ML)-optimized polygenic risk score (PRS) to complement existing GWAS and bring the prediction of disease/trait outcomes closer to clinical application. Rheumatoid Arthritis (RA) was selected as a model disease to demonstrate the robustness of ML in disease prediction as RA is a prevalent chronic inflammatory joint disease with high mortality rates, affecting adults at the economic prime. Early identification of at-risk individuals may facilitate measures to mitigate the effects of the disease. METHODS: This study employs a robust ML feature selection algorithm to identify single nucleotide polymorphisms (SNPs) that can predict RA from a set of training data comprising RA patients and population control samples. Thereafter, selected SNPs were evaluated for their predictive performances across 3 independent, unseen test datasets. The selected SNPs were subsequently used to generate PRS which was also evaluated for its predictive capacity as a sole feature. RESULTS: Through robust ML feature selection, 9 SNPs were found to be the minimum number of features for excellent predictive performance (AUC > 0.9) in 3 independent, unseen test datasets. PRS based on these 9 SNPs was significantly associated with (P < 1 × 10-16) and predictive (AUC > 0.9) of RA in the 3 unseen datasets. A RA ML-PRS calculator of these 9 SNPs was developed ( https://xistance.shinyapps.io/prs-ra/ ) to facilitate individualized clinical applicability. The majority of the predictive SNPs are protective, reside in non-coding regions, and are either predicted to be potentially functional SNPs (pfSNPs) or in high linkage disequilibrium (r2 > 0.8) with un-interrogated pfSNPs. CONCLUSIONS: These findings highlight the promise of this ML strategy to identify useful genetic features that can robustly predict disease and amenable to translation for clinical application.


Subject(s)
Arthritis, Rheumatoid , Polymorphism, Single Nucleotide , Adult , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease , Risk Factors , Arthritis, Rheumatoid/genetics , Machine Learning
2.
EBioMedicine ; 75: 103800, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35022146

ABSTRACT

BACKGROUND: Major challenges in large scale genetic association studies include not only the identification of causative single nucleotide polymorphisms (SNPs), but also accounting for SNP-SNP interactions. This study thus proposes a novel feature engineering approach integrating potentially functional coding haplotypes (pfcHap) with machine-learning (ML) feature selection to identify biologically meaningful, possibly causative genetic factors, that take into consideration potential SNP-SNP interactions within the pfcHap, to best predict for methotrexate (MTX) response in rheumatoid arthritis (RA) patients. METHODS: Exome sequencing from 349 RA patients were analysed, of which they were split into training and unseen test set. Inferred pfcHaps were combined with 30 non-genetic features to undergo ML recursive feature elimination with cross-validation using the training set. Predictive capacity and robustness of the selected features were assessed using six popular machine learning models through a train set cross-validation and evaluated in an unseen test set. FINDINGS: Significantly, 100 features (95 pfcHaps, 5 non-genetic factors) were identified to have good predictive performance (AUC: 0.776-0.828; Sensitivity: 0.656-0.813; Specificity: 0.684-0.868) across all six ML models in an unseen test dataset for the prediction of MTX response in RA patients. INTERPRETATION: Majority of the predictive pfcHap SNPs were predicted to be potentially functional and some of the genes in which the pfcHap resides in were identified to be associated with previously reported MTX/RA pathways. FUNDING: Singapore Ministry of Health's National Medical Research Council (NMRC) [NMRC/CBRG/0095/2015; CG12Aug17; CGAug16M012; NMRC/CG/017/2013]; National Cancer Center Research Fund and block funding Duke-NUS Medical School.; Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2019-T2-1-138.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Haplotypes , Humans , Machine Learning , Methotrexate/therapeutic use , Polymorphism, Single Nucleotide
3.
Rheumatology (Oxford) ; 61(10): 4175-4186, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35094058

ABSTRACT

OBJECTIVE: To develop a hypothesis-free model that best predicts response to MTX drug in RA patients utilizing biologically meaningful genetic feature selection of potentially functional single nucleotide polymorphisms (pfSNPs) through robust machine learning (ML) feature selection methods. METHODS: MTX-treated RA patients with known response were divided in a 4:1 ratio into training and test sets. From the patients' exomes, potential features for classifier prediction were identified from pfSNPs and non-genetic factors through ML using recursive feature elimination with cross-validation incorporating the random forest classifier. Feature selection was repeated on random subsets of the training cohort, and consensus features were assembled into the final feature set. This feature set was evaluated for predictive potential using six ML classifiers, first by cross-validation within the training set, and finally by analysing its performance with the unseen test set. RESULTS: The final feature set contains 56 pfSNPs and five non-genetic factors. The majority of these pfSNPs are located in pathways related to RA pathogenesis or MTX action and are predicted to modulate gene expression. When used for training in six ML classifiers, performance was good in both the training set (area under the curve: 0.855-0.916; sensitivity: 0.715-0.892; and specificity: 0.733-0.862) and the unseen test set (area under the curve: 0.751-0.826; sensitivity: 0.581-0.839; and specificity: 0.641-0.923). CONCLUSION: Sensitive and specific predictors of MTX response in RA patients were identified in this study through a novel strategy combining biologically meaningful and machine learning feature selection and training. These predictors may facilitate better treatment decision-making in RA management.


Subject(s)
Arthritis, Rheumatoid , Methotrexate , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Cohort Studies , Humans , Machine Learning , Methotrexate/therapeutic use , Polymorphism, Single Nucleotide
4.
Vaccines (Basel) ; 9(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34696249

ABSTRACT

As the COVID-19 pandemic rages unabated, and with more infectious variants, vaccination may offer a way to transit out of strict restrictions on physical human interactions to curb the virus spread and prevent overwhelming the healthcare system. However, vaccine hesitancy threatens to significantly impact our progress towards achieving this. It is thus important to understand the sentiments regarding vaccination for different segments of the population to facilitate the development of effective strategies to persuade these groups. Here, we surveyed the COVID-19 vaccination sentiments among a highly educated group of graduate students from the National University of Singapore (NUS). Graduate students who are citizens of 54 different countries, mainly from Asia, pursue studies in diverse fields, with 32% expressing vaccine hesitancy. Citizenship, religion, country of undergraduate/postgraduate studies, exposure risk and field of study are significantly associated with vaccine sentiments. Students who are Chinese citizens or studied in Chinese Universities prior to joining NUS are more hesitant, while students of Indian descent or studied in India are less hesitant about vaccination. Side effects, safety issues and vaccine choice are the major concerns of the hesitant group. Hence, this study would facilitate the development of strategies that focus on these determinants to enhance vaccine acceptance.

SELECTION OF CITATIONS
SEARCH DETAIL
...